Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
import logging | |
import unittest | |
import cv2 | |
import torch | |
from torch.autograd import Variable, gradcheck | |
from detectron2.layers.roi_align import ROIAlign | |
from detectron2.layers.roi_align_rotated import ROIAlignRotated | |
logger = logging.getLogger(__name__) | |
class ROIAlignRotatedTest(unittest.TestCase): | |
def _box_to_rotated_box(self, box, angle): | |
return [ | |
(box[0] + box[2]) / 2.0, | |
(box[1] + box[3]) / 2.0, | |
box[2] - box[0], | |
box[3] - box[1], | |
angle, | |
] | |
def _rot90(self, img, num): | |
num = num % 4 # note: -1 % 4 == 3 | |
for _ in range(num): | |
img = img.transpose(0, 1).flip(0) | |
return img | |
def test_forward_output_0_90_180_270(self): | |
for i in range(4): | |
# i = 0, 1, 2, 3 corresponding to 0, 90, 180, 270 degrees | |
img = torch.arange(25, dtype=torch.float32).reshape(5, 5) | |
""" | |
0 1 2 3 4 | |
5 6 7 8 9 | |
10 11 12 13 14 | |
15 16 17 18 19 | |
20 21 22 23 24 | |
""" | |
box = [1, 1, 3, 3] | |
rotated_box = self._box_to_rotated_box(box=box, angle=90 * i) | |
result = self._simple_roi_align_rotated(img=img, box=rotated_box, resolution=(4, 4)) | |
# Here's an explanation for 0 degree case: | |
# point 0 in the original input lies at [0.5, 0.5] | |
# (the center of bin [0, 1] x [0, 1]) | |
# point 1 in the original input lies at [1.5, 0.5], etc. | |
# since the resolution is (4, 4) that divides [1, 3] x [1, 3] | |
# into 4 x 4 equal bins, | |
# the top-left bin is [1, 1.5] x [1, 1.5], and its center | |
# (1.25, 1.25) lies at the 3/4 position | |
# between point 0 and point 1, point 5 and point 6, | |
# point 0 and point 5, point 1 and point 6, so it can be calculated as | |
# 0.25*(0*0.25+1*0.75)+(5*0.25+6*0.75)*0.75 = 4.5 | |
result_expected = torch.tensor( | |
[ | |
[4.5, 5.0, 5.5, 6.0], | |
[7.0, 7.5, 8.0, 8.5], | |
[9.5, 10.0, 10.5, 11.0], | |
[12.0, 12.5, 13.0, 13.5], | |
] | |
) | |
# This is also an upsampled version of [[6, 7], [11, 12]] | |
# When the box is rotated by 90 degrees CCW, | |
# the result would be rotated by 90 degrees CW, thus it's -i here | |
result_expected = self._rot90(result_expected, -i) | |
assert torch.allclose(result, result_expected) | |
def test_resize(self): | |
H, W = 30, 30 | |
input = torch.rand(H, W) * 100 | |
box = [10, 10, 20, 20] | |
rotated_box = self._box_to_rotated_box(box, angle=0) | |
output = self._simple_roi_align_rotated(img=input, box=rotated_box, resolution=(5, 5)) | |
input2x = cv2.resize(input.numpy(), (W // 2, H // 2), interpolation=cv2.INTER_LINEAR) | |
input2x = torch.from_numpy(input2x) | |
box2x = [x / 2 for x in box] | |
rotated_box2x = self._box_to_rotated_box(box2x, angle=0) | |
output2x = self._simple_roi_align_rotated(img=input2x, box=rotated_box2x, resolution=(5, 5)) | |
assert torch.allclose(output2x, output) | |
def _simple_roi_align_rotated(self, img, box, resolution): | |
""" | |
RoiAlignRotated with scale 1.0 and 0 sample ratio. | |
""" | |
op = ROIAlignRotated(output_size=resolution, spatial_scale=1.0, sampling_ratio=0) | |
input = img[None, None, :, :] | |
rois = [0] + list(box) | |
rois = torch.tensor(rois, dtype=torch.float32)[None, :] | |
result_cpu = op.forward(input, rois) | |
if torch.cuda.is_available(): | |
result_cuda = op.forward(input.cuda(), rois.cuda()) | |
assert torch.allclose(result_cpu, result_cuda.cpu()) | |
return result_cpu[0, 0] | |
def test_empty_box(self): | |
img = torch.rand(5, 5) | |
out = self._simple_roi_align_rotated(img, [2, 3, 0, 0, 0], (7, 7)) | |
self.assertTrue((out == 0).all()) | |
def test_roi_align_rotated_gradcheck_cpu(self): | |
dtype = torch.float64 | |
device = torch.device("cpu") | |
roi_align_rotated_op = ROIAlignRotated( | |
output_size=(5, 5), spatial_scale=0.5, sampling_ratio=1 | |
).to(dtype=dtype, device=device) | |
x = torch.rand(1, 1, 10, 10, dtype=dtype, device=device, requires_grad=True) | |
# roi format is (batch index, x_center, y_center, width, height, angle) | |
rois = torch.tensor( | |
[[0, 4.5, 4.5, 9, 9, 0], [0, 2, 7, 4, 4, 0], [0, 7, 7, 4, 4, 0]], | |
dtype=dtype, | |
device=device, | |
) | |
def func(input): | |
return roi_align_rotated_op(input, rois) | |
assert gradcheck(func, (x,)), "gradcheck failed for RoIAlignRotated CPU" | |
assert gradcheck(func, (x.transpose(2, 3),)), "gradcheck failed for RoIAlignRotated CPU" | |
def test_roi_align_rotated_gradient_cuda(self): | |
""" | |
Compute gradients for ROIAlignRotated with multiple bounding boxes on the GPU, | |
and compare the result with ROIAlign | |
""" | |
# torch.manual_seed(123) | |
dtype = torch.float64 | |
device = torch.device("cuda") | |
pool_h, pool_w = (5, 5) | |
roi_align = ROIAlign(output_size=(pool_h, pool_w), spatial_scale=1, sampling_ratio=2).to( | |
device=device | |
) | |
roi_align_rotated = ROIAlignRotated( | |
output_size=(pool_h, pool_w), spatial_scale=1, sampling_ratio=2 | |
).to(device=device) | |
x = torch.rand(1, 1, 10, 10, dtype=dtype, device=device, requires_grad=True) | |
# x_rotated = x.clone() won't work (will lead to grad_fun=CloneBackward)! | |
x_rotated = Variable(x.data.clone(), requires_grad=True) | |
# roi_rotated format is (batch index, x_center, y_center, width, height, angle) | |
rois_rotated = torch.tensor( | |
[[0, 4.5, 4.5, 9, 9, 0], [0, 2, 7, 4, 4, 0], [0, 7, 7, 4, 4, 0]], | |
dtype=dtype, | |
device=device, | |
) | |
y_rotated = roi_align_rotated(x_rotated, rois_rotated) | |
s_rotated = y_rotated.sum() | |
s_rotated.backward() | |
# roi format is (batch index, x1, y1, x2, y2) | |
rois = torch.tensor( | |
[[0, 0, 0, 9, 9], [0, 0, 5, 4, 9], [0, 5, 5, 9, 9]], dtype=dtype, device=device | |
) | |
y = roi_align(x, rois) | |
s = y.sum() | |
s.backward() | |
assert torch.allclose( | |
x.grad, x_rotated.grad | |
), "gradients for ROIAlign and ROIAlignRotated mismatch on CUDA" | |
if __name__ == "__main__": | |
unittest.main() | |