Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
import unittest | |
from typing import List | |
import torch | |
from detectron2.config import get_cfg | |
from detectron2.modeling.matcher import Matcher | |
class TestMatcher(unittest.TestCase): | |
def test_scriptability(self): | |
cfg = get_cfg() | |
anchor_matcher = Matcher( | |
cfg.MODEL.RPN.IOU_THRESHOLDS, cfg.MODEL.RPN.IOU_LABELS, allow_low_quality_matches=True | |
) | |
match_quality_matrix = torch.tensor( | |
[[0.15, 0.45, 0.2, 0.6], [0.3, 0.65, 0.05, 0.1], [0.05, 0.4, 0.25, 0.4]] | |
) | |
expected_matches = torch.tensor([1, 1, 2, 0]) | |
expected_match_labels = torch.tensor([-1, 1, 0, 1], dtype=torch.int8) | |
matches, match_labels = anchor_matcher(match_quality_matrix) | |
self.assertTrue(torch.allclose(matches, expected_matches)) | |
self.assertTrue(torch.allclose(match_labels, expected_match_labels)) | |
# nonzero_tuple must be import explicitly to let jit know what it is. | |
# https://github.com/pytorch/pytorch/issues/38964 | |
from detectron2.layers import nonzero_tuple # noqa F401 | |
def f(thresholds: List[float], labels: List[int]): | |
return Matcher(thresholds, labels, allow_low_quality_matches=True) | |
scripted_anchor_matcher = torch.jit.script(f)( | |
cfg.MODEL.RPN.IOU_THRESHOLDS, cfg.MODEL.RPN.IOU_LABELS | |
) | |
matches, match_labels = scripted_anchor_matcher(match_quality_matrix) | |
self.assertTrue(torch.allclose(matches, expected_matches)) | |
self.assertTrue(torch.allclose(match_labels, expected_match_labels)) | |
if __name__ == "__main__": | |
unittest.main() | |