Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
import itertools | |
import unittest | |
from contextlib import contextmanager | |
from copy import deepcopy | |
import torch | |
from detectron2.structures import BitMasks, Boxes, ImageList, Instances | |
from detectron2.utils.events import EventStorage | |
from detectron2.utils.testing import get_model_no_weights | |
def typecheck_hook(model, *, in_dtype=None, out_dtype=None): | |
""" | |
Check that the model must be called with the given input/output dtype | |
""" | |
if not isinstance(in_dtype, set): | |
in_dtype = {in_dtype} | |
if not isinstance(out_dtype, set): | |
out_dtype = {out_dtype} | |
def flatten(x): | |
if isinstance(x, torch.Tensor): | |
return [x] | |
if isinstance(x, (list, tuple)): | |
return list(itertools.chain(*[flatten(t) for t in x])) | |
if isinstance(x, dict): | |
return flatten(list(x.values())) | |
return [] | |
def hook(module, input, output): | |
if in_dtype is not None: | |
dtypes = {x.dtype for x in flatten(input)} | |
assert ( | |
dtypes == in_dtype | |
), f"Expected input dtype of {type(module)} is {in_dtype}. Got {dtypes} instead!" | |
if out_dtype is not None: | |
dtypes = {x.dtype for x in flatten(output)} | |
assert ( | |
dtypes == out_dtype | |
), f"Expected output dtype of {type(module)} is {out_dtype}. Got {dtypes} instead!" | |
with model.register_forward_hook(hook): | |
yield | |
def create_model_input(img, inst=None): | |
if inst is not None: | |
return {"image": img, "instances": inst} | |
else: | |
return {"image": img} | |
def get_empty_instance(h, w): | |
inst = Instances((h, w)) | |
inst.gt_boxes = Boxes(torch.rand(0, 4)) | |
inst.gt_classes = torch.tensor([]).to(dtype=torch.int64) | |
inst.gt_masks = BitMasks(torch.rand(0, h, w)) | |
return inst | |
def get_regular_bitmask_instances(h, w): | |
inst = Instances((h, w)) | |
inst.gt_boxes = Boxes(torch.rand(3, 4)) | |
inst.gt_boxes.tensor[:, 2:] += inst.gt_boxes.tensor[:, :2] | |
inst.gt_classes = torch.tensor([3, 4, 5]).to(dtype=torch.int64) | |
inst.gt_masks = BitMasks((torch.rand(3, h, w) > 0.5)) | |
return inst | |
class InstanceModelE2ETest: | |
def setUp(self): | |
torch.manual_seed(43) | |
self.model = get_model_no_weights(self.CONFIG_PATH) | |
def _test_eval(self, input_sizes): | |
inputs = [create_model_input(torch.rand(3, s[0], s[1])) for s in input_sizes] | |
self.model.eval() | |
self.model(inputs) | |
def _test_train(self, input_sizes, instances): | |
assert len(input_sizes) == len(instances) | |
inputs = [ | |
create_model_input(torch.rand(3, s[0], s[1]), inst) | |
for s, inst in zip(input_sizes, instances) | |
] | |
self.model.train() | |
with EventStorage(): | |
losses = self.model(inputs) | |
sum(losses.values()).backward() | |
del losses | |
def _inf_tensor(self, *shape): | |
return 1.0 / torch.zeros(*shape, device=self.model.device) | |
def _nan_tensor(self, *shape): | |
return torch.zeros(*shape, device=self.model.device).fill_(float("nan")) | |
def test_empty_data(self): | |
instances = [get_empty_instance(200, 250), get_empty_instance(200, 249)] | |
self._test_eval([(200, 250), (200, 249)]) | |
self._test_train([(200, 250), (200, 249)], instances) | |
def test_eval_tocpu(self): | |
model = deepcopy(self.model).cpu() | |
model.eval() | |
input_sizes = [(200, 250), (200, 249)] | |
inputs = [create_model_input(torch.rand(3, s[0], s[1])) for s in input_sizes] | |
model(inputs) | |
class MaskRCNNE2ETest(InstanceModelE2ETest, unittest.TestCase): | |
CONFIG_PATH = "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml" | |
def test_half_empty_data(self): | |
instances = [get_empty_instance(200, 250), get_regular_bitmask_instances(200, 249)] | |
self._test_train([(200, 250), (200, 249)], instances) | |
# This test is flaky because in some environment the output features are zero due to relu | |
# def test_rpn_inf_nan_data(self): | |
# self.model.eval() | |
# for tensor in [self._inf_tensor, self._nan_tensor]: | |
# images = ImageList(tensor(1, 3, 512, 512), [(510, 510)]) | |
# features = { | |
# "p2": tensor(1, 256, 256, 256), | |
# "p3": tensor(1, 256, 128, 128), | |
# "p4": tensor(1, 256, 64, 64), | |
# "p5": tensor(1, 256, 32, 32), | |
# "p6": tensor(1, 256, 16, 16), | |
# } | |
# props, _ = self.model.proposal_generator(images, features) | |
# self.assertEqual(len(props[0]), 0) | |
def test_roiheads_inf_nan_data(self): | |
self.model.eval() | |
for tensor in [self._inf_tensor, self._nan_tensor]: | |
images = ImageList(tensor(1, 3, 512, 512), [(510, 510)]) | |
features = { | |
"p2": tensor(1, 256, 256, 256), | |
"p3": tensor(1, 256, 128, 128), | |
"p4": tensor(1, 256, 64, 64), | |
"p5": tensor(1, 256, 32, 32), | |
"p6": tensor(1, 256, 16, 16), | |
} | |
props = [Instances((510, 510))] | |
props[0].proposal_boxes = Boxes([[10, 10, 20, 20]]).to(device=self.model.device) | |
props[0].objectness_logits = torch.tensor([1.0]).reshape(1, 1) | |
det, _ = self.model.roi_heads(images, features, props) | |
self.assertEqual(len(det[0]), 0) | |
def test_autocast(self): | |
from torch.cuda.amp import autocast | |
inputs = [{"image": torch.rand(3, 100, 100)}] | |
self.model.eval() | |
with autocast(), typecheck_hook( | |
self.model.backbone, in_dtype=torch.float32, out_dtype=torch.float16 | |
), typecheck_hook( | |
self.model.roi_heads.box_predictor, in_dtype=torch.float16, out_dtype=torch.float16 | |
): | |
out = self.model.inference(inputs, do_postprocess=False)[0] | |
self.assertEqual(out.pred_boxes.tensor.dtype, torch.float32) | |
self.assertEqual(out.pred_masks.dtype, torch.float16) | |
self.assertEqual(out.scores.dtype, torch.float32) # scores comes from softmax | |
class RetinaNetE2ETest(InstanceModelE2ETest, unittest.TestCase): | |
CONFIG_PATH = "COCO-Detection/retinanet_R_50_FPN_1x.yaml" | |
def test_inf_nan_data(self): | |
self.model.eval() | |
self.model.score_threshold = -999999999 | |
for tensor in [self._inf_tensor, self._nan_tensor]: | |
images = ImageList(tensor(1, 3, 512, 512), [(510, 510)]) | |
features = [ | |
tensor(1, 256, 128, 128), | |
tensor(1, 256, 64, 64), | |
tensor(1, 256, 32, 32), | |
tensor(1, 256, 16, 16), | |
tensor(1, 256, 8, 8), | |
] | |
pred_logits, pred_anchor_deltas = self.model.head(features) | |
pred_logits = [tensor(*x.shape) for x in pred_logits] | |
pred_anchor_deltas = [tensor(*x.shape) for x in pred_anchor_deltas] | |
det = self.model.forward_inference(images, features, [pred_logits, pred_anchor_deltas]) | |
# all predictions (if any) are infinite or nan | |
if len(det[0]): | |
self.assertTrue(torch.isfinite(det[0].pred_boxes.tensor).sum() == 0) | |
def test_autocast(self): | |
from torch.cuda.amp import autocast | |
inputs = [{"image": torch.rand(3, 100, 100)}] | |
self.model.eval() | |
with autocast(), typecheck_hook( | |
self.model.backbone, in_dtype=torch.float32, out_dtype=torch.float16 | |
), typecheck_hook(self.model.head, in_dtype=torch.float16, out_dtype=torch.float16): | |
out = self.model(inputs)[0]["instances"] | |
self.assertEqual(out.pred_boxes.tensor.dtype, torch.float32) | |
self.assertEqual(out.scores.dtype, torch.float16) | |
class SemSegE2ETest(unittest.TestCase): | |
CONFIG_PATH = "Misc/semantic_R_50_FPN_1x.yaml" | |
def setUp(self): | |
torch.manual_seed(43) | |
self.model = get_model_no_weights(self.CONFIG_PATH) | |
def _test_eval(self, input_sizes): | |
inputs = [create_model_input(torch.rand(3, s[0], s[1])) for s in input_sizes] | |
self.model.eval() | |
self.model(inputs) | |
def test_forward(self): | |
self._test_eval([(200, 250), (200, 249)]) | |