Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
import itertools | |
import math | |
import operator | |
import unittest | |
import torch | |
from torch.utils import data | |
from torch.utils.data.sampler import SequentialSampler | |
from detectron2.data.build import worker_init_reset_seed | |
from detectron2.data.common import DatasetFromList, ToIterableDataset | |
from detectron2.data.samplers import ( | |
GroupedBatchSampler, | |
InferenceSampler, | |
RepeatFactorTrainingSampler, | |
TrainingSampler, | |
) | |
from detectron2.utils.env import seed_all_rng | |
class TestGroupedBatchSampler(unittest.TestCase): | |
def test_missing_group_id(self): | |
sampler = SequentialSampler(list(range(100))) | |
group_ids = [1] * 100 | |
samples = GroupedBatchSampler(sampler, group_ids, 2) | |
for mini_batch in samples: | |
self.assertEqual(len(mini_batch), 2) | |
def test_groups(self): | |
sampler = SequentialSampler(list(range(100))) | |
group_ids = [1, 0] * 50 | |
samples = GroupedBatchSampler(sampler, group_ids, 2) | |
for mini_batch in samples: | |
self.assertEqual((mini_batch[0] + mini_batch[1]) % 2, 0) | |
class TestSamplerDeterministic(unittest.TestCase): | |
def test_to_iterable(self): | |
sampler = TrainingSampler(100, seed=10) | |
gt_output = list(itertools.islice(sampler, 100)) | |
self.assertEqual(set(gt_output), set(range(100))) | |
dataset = DatasetFromList(list(range(100))) | |
dataset = ToIterableDataset(dataset, sampler) | |
data_loader = data.DataLoader(dataset, num_workers=0, collate_fn=operator.itemgetter(0)) | |
output = list(itertools.islice(data_loader, 100)) | |
self.assertEqual(output, gt_output) | |
data_loader = data.DataLoader( | |
dataset, | |
num_workers=2, | |
collate_fn=operator.itemgetter(0), | |
worker_init_fn=worker_init_reset_seed, | |
# reset seed should not affect behavior of TrainingSampler | |
) | |
output = list(itertools.islice(data_loader, 100)) | |
# multiple workers should not lead to duplicate or different data | |
self.assertEqual(output, gt_output) | |
def test_training_sampler_seed(self): | |
seed_all_rng(42) | |
sampler = TrainingSampler(30) | |
data = list(itertools.islice(sampler, 65)) | |
seed_all_rng(42) | |
sampler = TrainingSampler(30) | |
seed_all_rng(999) # should be ineffective | |
data2 = list(itertools.islice(sampler, 65)) | |
self.assertEqual(data, data2) | |
class TestRepeatFactorTrainingSampler(unittest.TestCase): | |
def test_repeat_factors_from_category_frequency(self): | |
repeat_thresh = 0.5 | |
dataset_dicts = [ | |
{"annotations": [{"category_id": 0}, {"category_id": 1}]}, | |
{"annotations": [{"category_id": 0}]}, | |
{"annotations": []}, | |
] | |
rep_factors = RepeatFactorTrainingSampler.repeat_factors_from_category_frequency( | |
dataset_dicts, repeat_thresh | |
) | |
expected_rep_factors = torch.tensor([math.sqrt(3 / 2), 1.0, 1.0]) | |
self.assertTrue(torch.allclose(rep_factors, expected_rep_factors)) | |
class TestInferenceSampler(unittest.TestCase): | |
def test_local_indices(self): | |
sizes = [0, 16, 2, 42] | |
world_sizes = [5, 2, 3, 4] | |
expected_results = [ | |
[range(0) for _ in range(5)], | |
[range(8), range(8, 16)], | |
[range(1), range(1, 2), range(0)], | |
[range(11), range(11, 22), range(22, 32), range(32, 42)], | |
] | |
for size, world_size, expected_result in zip(sizes, world_sizes, expected_results): | |
with self.subTest(f"size={size}, world_size={world_size}"): | |
local_indices = [ | |
InferenceSampler._get_local_indices(size, world_size, r) | |
for r in range(world_size) | |
] | |
self.assertEqual(local_indices, expected_result) | |