Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
import unittest | |
import torch | |
from torch import nn | |
from detectron2.layers import ASPP, DepthwiseSeparableConv2d, FrozenBatchNorm2d | |
from detectron2.modeling.backbone.resnet import BasicStem, ResNet | |
""" | |
Test for misc layers. | |
""" | |
class TestBlocks(unittest.TestCase): | |
def test_separable_conv(self): | |
DepthwiseSeparableConv2d(3, 10, norm1="BN", activation1=nn.PReLU()) | |
def test_aspp(self): | |
m = ASPP(3, 10, [2, 3, 4], norm="", activation=nn.PReLU()) | |
self.assertIsNot(m.convs[0].activation.weight, m.convs[1].activation.weight) | |
self.assertIsNot(m.convs[0].activation.weight, m.project.activation.weight) | |
def test_frozen_batchnorm_fp16(self): | |
from torch.cuda.amp import autocast | |
C = 10 | |
input = torch.rand(1, C, 10, 10).cuda() | |
m = FrozenBatchNorm2d(C).cuda() | |
with autocast(): | |
output = m(input.half()) | |
self.assertEqual(output.dtype, torch.float16) | |
# requires_grad triggers a different codepath | |
input.requires_grad_() | |
with autocast(): | |
output = m(input.half()) | |
self.assertEqual(output.dtype, torch.float16) | |
def test_resnet_unused_stages(self): | |
resnet = ResNet(BasicStem(), ResNet.make_default_stages(18), out_features=["res2"]) | |
self.assertTrue(hasattr(resnet, "res2")) | |
self.assertFalse(hasattr(resnet, "res3")) | |
self.assertFalse(hasattr(resnet, "res5")) | |
resnet = ResNet(BasicStem(), ResNet.make_default_stages(18), out_features=["res2", "res5"]) | |
self.assertTrue(hasattr(resnet, "res2")) | |
self.assertTrue(hasattr(resnet, "res4")) | |
self.assertTrue(hasattr(resnet, "res5")) | |