Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
import numpy as np | |
from typing import Any, List, Tuple, Union | |
import torch | |
from torch.nn import functional as F | |
class Keypoints: | |
""" | |
Stores keypoint **annotation** data. GT Instances have a `gt_keypoints` property | |
containing the x,y location and visibility flag of each keypoint. This tensor has shape | |
(N, K, 3) where N is the number of instances and K is the number of keypoints per instance. | |
The visibility flag follows the COCO format and must be one of three integers: | |
* v=0: not labeled (in which case x=y=0) | |
* v=1: labeled but not visible | |
* v=2: labeled and visible | |
""" | |
def __init__(self, keypoints: Union[torch.Tensor, np.ndarray, List[List[float]]]): | |
""" | |
Arguments: | |
keypoints: A Tensor, numpy array, or list of the x, y, and visibility of each keypoint. | |
The shape should be (N, K, 3) where N is the number of | |
instances, and K is the number of keypoints per instance. | |
""" | |
device = keypoints.device if isinstance(keypoints, torch.Tensor) else torch.device("cpu") | |
keypoints = torch.as_tensor(keypoints, dtype=torch.float32, device=device) | |
assert keypoints.dim() == 3 and keypoints.shape[2] == 3, keypoints.shape | |
self.tensor = keypoints | |
def __len__(self) -> int: | |
return self.tensor.size(0) | |
def to(self, *args: Any, **kwargs: Any) -> "Keypoints": | |
return type(self)(self.tensor.to(*args, **kwargs)) | |
def device(self) -> torch.device: | |
return self.tensor.device | |
def to_heatmap(self, boxes: torch.Tensor, heatmap_size: int) -> torch.Tensor: | |
""" | |
Convert keypoint annotations to a heatmap of one-hot labels for training, | |
as described in :paper:`Mask R-CNN`. | |
Arguments: | |
boxes: Nx4 tensor, the boxes to draw the keypoints to | |
Returns: | |
heatmaps: | |
A tensor of shape (N, K), each element is integer spatial label | |
in the range [0, heatmap_size**2 - 1] for each keypoint in the input. | |
valid: | |
A tensor of shape (N, K) containing whether each keypoint is in the roi or not. | |
""" | |
return _keypoints_to_heatmap(self.tensor, boxes, heatmap_size) | |
def __getitem__(self, item: Union[int, slice, torch.BoolTensor]) -> "Keypoints": | |
""" | |
Create a new `Keypoints` by indexing on this `Keypoints`. | |
The following usage are allowed: | |
1. `new_kpts = kpts[3]`: return a `Keypoints` which contains only one instance. | |
2. `new_kpts = kpts[2:10]`: return a slice of key points. | |
3. `new_kpts = kpts[vector]`, where vector is a torch.ByteTensor | |
with `length = len(kpts)`. Nonzero elements in the vector will be selected. | |
Note that the returned Keypoints might share storage with this Keypoints, | |
subject to Pytorch's indexing semantics. | |
""" | |
if isinstance(item, int): | |
return Keypoints([self.tensor[item]]) | |
return Keypoints(self.tensor[item]) | |
def __repr__(self) -> str: | |
s = self.__class__.__name__ + "(" | |
s += "num_instances={})".format(len(self.tensor)) | |
return s | |
def cat(keypoints_list: List["Keypoints"]) -> "Keypoints": | |
""" | |
Concatenates a list of Keypoints into a single Keypoints | |
Arguments: | |
keypoints_list (list[Keypoints]) | |
Returns: | |
Keypoints: the concatenated Keypoints | |
""" | |
assert isinstance(keypoints_list, (list, tuple)) | |
assert len(keypoints_list) > 0 | |
assert all(isinstance(keypoints, Keypoints) for keypoints in keypoints_list) | |
cat_kpts = type(keypoints_list[0])( | |
torch.cat([kpts.tensor for kpts in keypoints_list], dim=0) | |
) | |
return cat_kpts | |
# TODO make this nicer, this is a direct translation from C2 (but removing the inner loop) | |
def _keypoints_to_heatmap( | |
keypoints: torch.Tensor, rois: torch.Tensor, heatmap_size: int | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Encode keypoint locations into a target heatmap for use in SoftmaxWithLoss across space. | |
Maps keypoints from the half-open interval [x1, x2) on continuous image coordinates to the | |
closed interval [0, heatmap_size - 1] on discrete image coordinates. We use the | |
continuous-discrete conversion from Heckbert 1990 ("What is the coordinate of a pixel?"): | |
d = floor(c) and c = d + 0.5, where d is a discrete coordinate and c is a continuous coordinate. | |
Arguments: | |
keypoints: tensor of keypoint locations in of shape (N, K, 3). | |
rois: Nx4 tensor of rois in xyxy format | |
heatmap_size: integer side length of square heatmap. | |
Returns: | |
heatmaps: A tensor of shape (N, K) containing an integer spatial label | |
in the range [0, heatmap_size**2 - 1] for each keypoint in the input. | |
valid: A tensor of shape (N, K) containing whether each keypoint is in | |
the roi or not. | |
""" | |
if rois.numel() == 0: | |
return rois.new().long(), rois.new().long() | |
offset_x = rois[:, 0] | |
offset_y = rois[:, 1] | |
scale_x = heatmap_size / (rois[:, 2] - rois[:, 0]) | |
scale_y = heatmap_size / (rois[:, 3] - rois[:, 1]) | |
offset_x = offset_x[:, None] | |
offset_y = offset_y[:, None] | |
scale_x = scale_x[:, None] | |
scale_y = scale_y[:, None] | |
x = keypoints[..., 0] | |
y = keypoints[..., 1] | |
x_boundary_inds = x == rois[:, 2][:, None] | |
y_boundary_inds = y == rois[:, 3][:, None] | |
x = (x - offset_x) * scale_x | |
x = x.floor().long() | |
y = (y - offset_y) * scale_y | |
y = y.floor().long() | |
x[x_boundary_inds] = heatmap_size - 1 | |
y[y_boundary_inds] = heatmap_size - 1 | |
valid_loc = (x >= 0) & (y >= 0) & (x < heatmap_size) & (y < heatmap_size) | |
vis = keypoints[..., 2] > 0 | |
valid = (valid_loc & vis).long() | |
lin_ind = y * heatmap_size + x | |
heatmaps = lin_ind * valid | |
return heatmaps, valid | |
def heatmaps_to_keypoints(maps: torch.Tensor, rois: torch.Tensor) -> torch.Tensor: | |
""" | |
Extract predicted keypoint locations from heatmaps. | |
Args: | |
maps (Tensor): (#ROIs, #keypoints, POOL_H, POOL_W). The predicted heatmap of logits for | |
each ROI and each keypoint. | |
rois (Tensor): (#ROIs, 4). The box of each ROI. | |
Returns: | |
Tensor of shape (#ROIs, #keypoints, 4) with the last dimension corresponding to | |
(x, y, logit, score) for each keypoint. | |
When converting discrete pixel indices in an NxN image to a continuous keypoint coordinate, | |
we maintain consistency with :meth:`Keypoints.to_heatmap` by using the conversion from | |
Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a continuous coordinate. | |
""" | |
# The decorator use of torch.no_grad() was not supported by torchscript. | |
# https://github.com/pytorch/pytorch/issues/44768 | |
maps = maps.detach() | |
rois = rois.detach() | |
offset_x = rois[:, 0] | |
offset_y = rois[:, 1] | |
widths = (rois[:, 2] - rois[:, 0]).clamp(min=1) | |
heights = (rois[:, 3] - rois[:, 1]).clamp(min=1) | |
widths_ceil = widths.ceil() | |
heights_ceil = heights.ceil() | |
num_rois, num_keypoints = maps.shape[:2] | |
xy_preds = maps.new_zeros(rois.shape[0], num_keypoints, 4) | |
width_corrections = widths / widths_ceil | |
height_corrections = heights / heights_ceil | |
keypoints_idx = torch.arange(num_keypoints, device=maps.device) | |
for i in range(num_rois): | |
outsize = (int(heights_ceil[i]), int(widths_ceil[i])) | |
roi_map = F.interpolate( | |
maps[[i]], size=outsize, mode="bicubic", align_corners=False | |
).squeeze( | |
0 | |
) # #keypoints x H x W | |
# softmax over the spatial region | |
max_score, _ = roi_map.view(num_keypoints, -1).max(1) | |
max_score = max_score.view(num_keypoints, 1, 1) | |
tmp_full_resolution = (roi_map - max_score).exp_() | |
tmp_pool_resolution = (maps[i] - max_score).exp_() | |
# Produce scores over the region H x W, but normalize with POOL_H x POOL_W, | |
# so that the scores of objects of different absolute sizes will be more comparable | |
roi_map_scores = tmp_full_resolution / tmp_pool_resolution.sum((1, 2), keepdim=True) | |
w = roi_map.shape[2] | |
pos = roi_map.view(num_keypoints, -1).argmax(1) | |
x_int = pos % w | |
y_int = (pos - x_int) // w | |
assert ( | |
roi_map_scores[keypoints_idx, y_int, x_int] | |
== roi_map_scores.view(num_keypoints, -1).max(1)[0] | |
).all() | |
x = (x_int.float() + 0.5) * width_corrections[i] | |
y = (y_int.float() + 0.5) * height_corrections[i] | |
xy_preds[i, :, 0] = x + offset_x[i] | |
xy_preds[i, :, 1] = y + offset_y[i] | |
xy_preds[i, :, 2] = roi_map[keypoints_idx, y_int, x_int] | |
xy_preds[i, :, 3] = roi_map_scores[keypoints_idx, y_int, x_int] | |
return xy_preds | |