Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
import logging | |
import unittest | |
import torch | |
from detectron2.config import get_cfg | |
from detectron2.export import scripting_with_instances | |
from detectron2.layers import ShapeSpec | |
from detectron2.modeling.backbone import build_backbone | |
from detectron2.modeling.proposal_generator import RPN, build_proposal_generator | |
from detectron2.modeling.proposal_generator.proposal_utils import ( | |
add_ground_truth_to_proposals, | |
find_top_rpn_proposals, | |
) | |
from detectron2.structures import Boxes, ImageList, Instances, RotatedBoxes | |
from detectron2.utils.events import EventStorage | |
logger = logging.getLogger(__name__) | |
class RPNTest(unittest.TestCase): | |
def get_gt_and_features(self): | |
num_images = 2 | |
images_tensor = torch.rand(num_images, 20, 30) | |
image_sizes = [(10, 10), (20, 30)] | |
images = ImageList(images_tensor, image_sizes) | |
image_shape = (15, 15) | |
num_channels = 1024 | |
features = {"res4": torch.rand(num_images, num_channels, 1, 2)} | |
gt_boxes = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]], dtype=torch.float32) | |
gt_instances = Instances(image_shape) | |
gt_instances.gt_boxes = Boxes(gt_boxes) | |
return (gt_instances, features, images, image_sizes) | |
def test_rpn(self): | |
torch.manual_seed(121) | |
cfg = get_cfg() | |
backbone = build_backbone(cfg) | |
proposal_generator = RPN(cfg, backbone.output_shape()) | |
(gt_instances, features, images, image_sizes) = self.get_gt_and_features() | |
with EventStorage(): # capture events in a new storage to discard them | |
proposals, proposal_losses = proposal_generator( | |
images, features, [gt_instances[0], gt_instances[1]] | |
) | |
expected_losses = { | |
"loss_rpn_cls": torch.tensor(0.08011703193), | |
"loss_rpn_loc": torch.tensor(0.101470276), | |
} | |
for name in expected_losses.keys(): | |
err_msg = "proposal_losses[{}] = {}, expected losses = {}".format( | |
name, proposal_losses[name], expected_losses[name] | |
) | |
self.assertTrue(torch.allclose(proposal_losses[name], expected_losses[name]), err_msg) | |
self.assertEqual(len(proposals), len(image_sizes)) | |
for proposal, im_size in zip(proposals, image_sizes): | |
self.assertEqual(proposal.image_size, im_size) | |
expected_proposal_box = torch.tensor([[0, 0, 10, 10], [7.2702, 0, 10, 10]]) | |
expected_objectness_logit = torch.tensor([0.1596, -0.0007]) | |
self.assertTrue( | |
torch.allclose(proposals[0].proposal_boxes.tensor, expected_proposal_box, atol=1e-4) | |
) | |
self.assertTrue( | |
torch.allclose(proposals[0].objectness_logits, expected_objectness_logit, atol=1e-4) | |
) | |
def verify_rpn(self, conv_dims, expected_conv_dims): | |
torch.manual_seed(121) | |
cfg = get_cfg() | |
cfg.MODEL.RPN.CONV_DIMS = conv_dims | |
backbone = build_backbone(cfg) | |
proposal_generator = RPN(cfg, backbone.output_shape()) | |
for k, conv in enumerate(proposal_generator.rpn_head.conv): | |
self.assertEqual(expected_conv_dims[k], conv.out_channels) | |
return proposal_generator | |
def test_rpn_larger_num_convs(self): | |
conv_dims = [64, 64, 64, 64, 64] | |
proposal_generator = self.verify_rpn(conv_dims, conv_dims) | |
(gt_instances, features, images, image_sizes) = self.get_gt_and_features() | |
with EventStorage(): # capture events in a new storage to discard them | |
proposals, proposal_losses = proposal_generator( | |
images, features, [gt_instances[0], gt_instances[1]] | |
) | |
expected_losses = { | |
"loss_rpn_cls": torch.tensor(0.08122821152), | |
"loss_rpn_loc": torch.tensor(0.10064548254), | |
} | |
for name in expected_losses.keys(): | |
err_msg = "proposal_losses[{}] = {}, expected losses = {}".format( | |
name, proposal_losses[name], expected_losses[name] | |
) | |
self.assertTrue(torch.allclose(proposal_losses[name], expected_losses[name]), err_msg) | |
def test_rpn_conv_dims_not_set(self): | |
conv_dims = [-1, -1, -1] | |
expected_conv_dims = [1024, 1024, 1024] | |
self.verify_rpn(conv_dims, expected_conv_dims) | |
def test_rpn_scriptability(self): | |
cfg = get_cfg() | |
proposal_generator = RPN(cfg, {"res4": ShapeSpec(channels=1024, stride=16)}).eval() | |
num_images = 2 | |
images_tensor = torch.rand(num_images, 30, 40) | |
image_sizes = [(32, 32), (30, 40)] | |
images = ImageList(images_tensor, image_sizes) | |
features = {"res4": torch.rand(num_images, 1024, 1, 2)} | |
fields = {"proposal_boxes": Boxes, "objectness_logits": torch.Tensor} | |
proposal_generator_ts = scripting_with_instances(proposal_generator, fields) | |
proposals, _ = proposal_generator(images, features) | |
proposals_ts, _ = proposal_generator_ts(images, features) | |
for proposal, proposal_ts in zip(proposals, proposals_ts): | |
self.assertEqual(proposal.image_size, proposal_ts.image_size) | |
self.assertTrue( | |
torch.equal(proposal.proposal_boxes.tensor, proposal_ts.proposal_boxes.tensor) | |
) | |
self.assertTrue(torch.equal(proposal.objectness_logits, proposal_ts.objectness_logits)) | |
def test_rrpn(self): | |
torch.manual_seed(121) | |
cfg = get_cfg() | |
cfg.MODEL.PROPOSAL_GENERATOR.NAME = "RRPN" | |
cfg.MODEL.ANCHOR_GENERATOR.NAME = "RotatedAnchorGenerator" | |
cfg.MODEL.ANCHOR_GENERATOR.SIZES = [[32, 64]] | |
cfg.MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS = [[0.25, 1]] | |
cfg.MODEL.ANCHOR_GENERATOR.ANGLES = [[0, 60]] | |
cfg.MODEL.RPN.BBOX_REG_WEIGHTS = (1, 1, 1, 1, 1) | |
cfg.MODEL.RPN.HEAD_NAME = "StandardRPNHead" | |
backbone = build_backbone(cfg) | |
proposal_generator = build_proposal_generator(cfg, backbone.output_shape()) | |
num_images = 2 | |
images_tensor = torch.rand(num_images, 20, 30) | |
image_sizes = [(10, 10), (20, 30)] | |
images = ImageList(images_tensor, image_sizes) | |
image_shape = (15, 15) | |
num_channels = 1024 | |
features = {"res4": torch.rand(num_images, num_channels, 1, 2)} | |
gt_boxes = torch.tensor([[2, 2, 2, 2, 0], [4, 4, 4, 4, 0]], dtype=torch.float32) | |
gt_instances = Instances(image_shape) | |
gt_instances.gt_boxes = RotatedBoxes(gt_boxes) | |
with EventStorage(): # capture events in a new storage to discard them | |
proposals, proposal_losses = proposal_generator( | |
images, features, [gt_instances[0], gt_instances[1]] | |
) | |
expected_losses = { | |
"loss_rpn_cls": torch.tensor(0.04291602224), | |
"loss_rpn_loc": torch.tensor(0.145077362), | |
} | |
for name in expected_losses.keys(): | |
err_msg = "proposal_losses[{}] = {}, expected losses = {}".format( | |
name, proposal_losses[name], expected_losses[name] | |
) | |
self.assertTrue(torch.allclose(proposal_losses[name], expected_losses[name]), err_msg) | |
expected_proposal_box = torch.tensor( | |
[ | |
[-1.77999556, 0.78155339, 68.04367828, 14.78156471, 60.59333801], | |
[13.82740974, -1.50282836, 34.67269897, 29.19676590, -3.81942749], | |
[8.10392570, -0.99071521, 145.39100647, 32.13126373, 3.67242432], | |
[5.00000000, 4.57370186, 10.00000000, 9.14740372, 0.89196777], | |
] | |
) | |
expected_objectness_logit = torch.tensor([0.10924313, 0.09881870, 0.07649877, 0.05858029]) | |
torch.set_printoptions(precision=8, sci_mode=False) | |
self.assertEqual(len(proposals), len(image_sizes)) | |
proposal = proposals[0] | |
# It seems that there's some randomness in the result across different machines: | |
# This test can be run on a local machine for 100 times with exactly the same result, | |
# However, a different machine might produce slightly different results, | |
# thus the atol here. | |
err_msg = "computed proposal boxes = {}, expected {}".format( | |
proposal.proposal_boxes.tensor, expected_proposal_box | |
) | |
self.assertTrue( | |
torch.allclose(proposal.proposal_boxes.tensor[:4], expected_proposal_box, atol=1e-5), | |
err_msg, | |
) | |
err_msg = "computed objectness logits = {}, expected {}".format( | |
proposal.objectness_logits, expected_objectness_logit | |
) | |
self.assertTrue( | |
torch.allclose(proposal.objectness_logits[:4], expected_objectness_logit, atol=1e-5), | |
err_msg, | |
) | |
def test_find_rpn_proposals_inf(self): | |
N, Hi, Wi, A = 3, 3, 3, 3 | |
proposals = [torch.rand(N, Hi * Wi * A, 4)] | |
pred_logits = [torch.rand(N, Hi * Wi * A)] | |
pred_logits[0][1][3:5].fill_(float("inf")) | |
find_top_rpn_proposals(proposals, pred_logits, [(10, 10)], 0.5, 1000, 1000, 0, False) | |
def test_find_rpn_proposals_tracing(self): | |
N, Hi, Wi, A = 3, 50, 50, 9 | |
proposal = torch.rand(N, Hi * Wi * A, 4) | |
pred_logit = torch.rand(N, Hi * Wi * A) | |
def func(proposal, logit, image_size): | |
r = find_top_rpn_proposals( | |
[proposal], [logit], [image_size], 0.7, 1000, 1000, 0, False | |
)[0] | |
size = r.image_size | |
if not isinstance(size, torch.Tensor): | |
size = torch.tensor(size) | |
return (size, r.proposal_boxes.tensor, r.objectness_logits) | |
other_inputs = [] | |
# test that it generalizes to other shapes | |
for Hi, Wi, shp in [(30, 30, 60), (10, 10, 800)]: | |
other_inputs.append( | |
( | |
torch.rand(N, Hi * Wi * A, 4), | |
torch.rand(N, Hi * Wi * A), | |
torch.tensor([shp, shp]), | |
) | |
) | |
torch.jit.trace( | |
func, (proposal, pred_logit, torch.tensor([100, 100])), check_inputs=other_inputs | |
) | |
def test_append_gt_to_proposal(self): | |
proposals = Instances( | |
(10, 10), | |
**{ | |
"proposal_boxes": Boxes(torch.empty((0, 4))), | |
"objectness_logits": torch.tensor([]), | |
"custom_attribute": torch.tensor([]), | |
} | |
) | |
gt_boxes = Boxes(torch.tensor([[0, 0, 1, 1]])) | |
self.assertRaises(AssertionError, add_ground_truth_to_proposals, [gt_boxes], [proposals]) | |
gt_instances = Instances((10, 10)) | |
gt_instances.gt_boxes = gt_boxes | |
self.assertRaises( | |
AssertionError, add_ground_truth_to_proposals, [gt_instances], [proposals] | |
) | |
gt_instances.custom_attribute = torch.tensor([1]) | |
gt_instances.custom_attribute2 = torch.tensor([1]) | |
new_proposals = add_ground_truth_to_proposals([gt_instances], [proposals])[0] | |
self.assertEqual(new_proposals.custom_attribute[0], 1) | |
# new proposals should only include the attributes in proposals | |
self.assertRaises(AttributeError, lambda: new_proposals.custom_attribute2) | |
if __name__ == "__main__": | |
unittest.main() | |