Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
import importlib | |
import numpy as np | |
import os | |
import re | |
import subprocess | |
import sys | |
from collections import defaultdict | |
import PIL | |
import torch | |
import torchvision | |
from tabulate import tabulate | |
__all__ = ["collect_env_info"] | |
def collect_torch_env(): | |
try: | |
import torch.__config__ | |
return torch.__config__.show() | |
except ImportError: | |
# compatible with older versions of pytorch | |
from torch.utils.collect_env import get_pretty_env_info | |
return get_pretty_env_info() | |
def get_env_module(): | |
var_name = "DETECTRON2_ENV_MODULE" | |
return var_name, os.environ.get(var_name, "<not set>") | |
def detect_compute_compatibility(CUDA_HOME, so_file): | |
try: | |
cuobjdump = os.path.join(CUDA_HOME, "bin", "cuobjdump") | |
if os.path.isfile(cuobjdump): | |
output = subprocess.check_output( | |
"'{}' --list-elf '{}'".format(cuobjdump, so_file), shell=True | |
) | |
output = output.decode("utf-8").strip().split("\n") | |
arch = [] | |
for line in output: | |
line = re.findall(r"\.sm_([0-9]*)\.", line)[0] | |
arch.append(".".join(line)) | |
arch = sorted(set(arch)) | |
return ", ".join(arch) | |
else: | |
return so_file + "; cannot find cuobjdump" | |
except Exception: | |
# unhandled failure | |
return so_file | |
def collect_env_info(): | |
has_gpu = torch.cuda.is_available() # true for both CUDA & ROCM | |
torch_version = torch.__version__ | |
# NOTE that CUDA_HOME/ROCM_HOME could be None even when CUDA runtime libs are functional | |
from torch.utils.cpp_extension import CUDA_HOME, ROCM_HOME | |
has_rocm = False | |
if (getattr(torch.version, "hip", None) is not None) and (ROCM_HOME is not None): | |
has_rocm = True | |
has_cuda = has_gpu and (not has_rocm) | |
data = [] | |
data.append(("sys.platform", sys.platform)) # check-template.yml depends on it | |
data.append(("Python", sys.version.replace("\n", ""))) | |
data.append(("numpy", np.__version__)) | |
try: | |
import detectron2 # noqa | |
data.append( | |
("detectron2", detectron2.__version__ + " @" + os.path.dirname(detectron2.__file__)) | |
) | |
except ImportError: | |
data.append(("detectron2", "failed to import")) | |
except AttributeError: | |
data.append(("detectron2", "imported a wrong installation")) | |
try: | |
import detectron2._C as _C | |
except ImportError as e: | |
data.append(("detectron2._C", f"not built correctly: {e}")) | |
# print system compilers when extension fails to build | |
if sys.platform != "win32": # don't know what to do for windows | |
try: | |
# this is how torch/utils/cpp_extensions.py choose compiler | |
cxx = os.environ.get("CXX", "c++") | |
cxx = subprocess.check_output("'{}' --version".format(cxx), shell=True) | |
cxx = cxx.decode("utf-8").strip().split("\n")[0] | |
except subprocess.SubprocessError: | |
cxx = "Not found" | |
data.append(("Compiler ($CXX)", cxx)) | |
if has_cuda and CUDA_HOME is not None: | |
try: | |
nvcc = os.path.join(CUDA_HOME, "bin", "nvcc") | |
nvcc = subprocess.check_output("'{}' -V".format(nvcc), shell=True) | |
nvcc = nvcc.decode("utf-8").strip().split("\n")[-1] | |
except subprocess.SubprocessError: | |
nvcc = "Not found" | |
data.append(("CUDA compiler", nvcc)) | |
if has_cuda and sys.platform != "win32": | |
try: | |
so_file = importlib.util.find_spec("detectron2._C").origin | |
except (ImportError, AttributeError): | |
pass | |
else: | |
data.append( | |
("detectron2 arch flags", detect_compute_compatibility(CUDA_HOME, so_file)) | |
) | |
else: | |
# print compilers that are used to build extension | |
data.append(("Compiler", _C.get_compiler_version())) | |
data.append(("CUDA compiler", _C.get_cuda_version())) # cuda or hip | |
if has_cuda and getattr(_C, "has_cuda", lambda: True)(): | |
data.append( | |
("detectron2 arch flags", detect_compute_compatibility(CUDA_HOME, _C.__file__)) | |
) | |
data.append(get_env_module()) | |
data.append(("PyTorch", torch_version + " @" + os.path.dirname(torch.__file__))) | |
data.append(("PyTorch debug build", torch.version.debug)) | |
if not has_gpu: | |
has_gpu_text = "No: torch.cuda.is_available() == False" | |
else: | |
has_gpu_text = "Yes" | |
data.append(("GPU available", has_gpu_text)) | |
if has_gpu: | |
devices = defaultdict(list) | |
for k in range(torch.cuda.device_count()): | |
cap = ".".join((str(x) for x in torch.cuda.get_device_capability(k))) | |
name = torch.cuda.get_device_name(k) + f" (arch={cap})" | |
devices[name].append(str(k)) | |
for name, devids in devices.items(): | |
data.append(("GPU " + ",".join(devids), name)) | |
if has_rocm: | |
msg = " - invalid!" if not (ROCM_HOME and os.path.isdir(ROCM_HOME)) else "" | |
data.append(("ROCM_HOME", str(ROCM_HOME) + msg)) | |
else: | |
try: | |
from torch.utils.collect_env import get_nvidia_driver_version, run as _run | |
data.append(("Driver version", get_nvidia_driver_version(_run))) | |
except Exception: | |
pass | |
msg = " - invalid!" if not (CUDA_HOME and os.path.isdir(CUDA_HOME)) else "" | |
data.append(("CUDA_HOME", str(CUDA_HOME) + msg)) | |
cuda_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST", None) | |
if cuda_arch_list: | |
data.append(("TORCH_CUDA_ARCH_LIST", cuda_arch_list)) | |
data.append(("Pillow", PIL.__version__)) | |
try: | |
data.append( | |
( | |
"torchvision", | |
str(torchvision.__version__) + " @" + os.path.dirname(torchvision.__file__), | |
) | |
) | |
if has_cuda: | |
try: | |
torchvision_C = importlib.util.find_spec("torchvision._C").origin | |
msg = detect_compute_compatibility(CUDA_HOME, torchvision_C) | |
data.append(("torchvision arch flags", msg)) | |
except (ImportError, AttributeError): | |
data.append(("torchvision._C", "Not found")) | |
except AttributeError: | |
data.append(("torchvision", "unknown")) | |
try: | |
import fvcore | |
data.append(("fvcore", fvcore.__version__)) | |
except (ImportError, AttributeError): | |
pass | |
try: | |
import iopath | |
data.append(("iopath", iopath.__version__)) | |
except (ImportError, AttributeError): | |
pass | |
try: | |
import cv2 | |
data.append(("cv2", cv2.__version__)) | |
except (ImportError, AttributeError): | |
data.append(("cv2", "Not found")) | |
env_str = tabulate(data) + "\n" | |
env_str += collect_torch_env() | |
return env_str | |
def test_nccl_ops(): | |
num_gpu = torch.cuda.device_count() | |
if os.access("/tmp", os.W_OK): | |
import torch.multiprocessing as mp | |
dist_url = "file:///tmp/nccl_tmp_file" | |
print("Testing NCCL connectivity ... this should not hang.") | |
mp.spawn(_test_nccl_worker, nprocs=num_gpu, args=(num_gpu, dist_url), daemon=False) | |
print("NCCL succeeded.") | |
def _test_nccl_worker(rank, num_gpu, dist_url): | |
import torch.distributed as dist | |
dist.init_process_group(backend="NCCL", init_method=dist_url, rank=rank, world_size=num_gpu) | |
dist.barrier(device_ids=[rank]) | |
if __name__ == "__main__": | |
try: | |
from detectron2.utils.collect_env import collect_env_info as f | |
print(f()) | |
except ImportError: | |
print(collect_env_info()) | |
if torch.cuda.is_available(): | |
num_gpu = torch.cuda.device_count() | |
for k in range(num_gpu): | |
device = f"cuda:{k}" | |
try: | |
x = torch.tensor([1, 2.0], dtype=torch.float32) | |
x = x.to(device) | |
except Exception as e: | |
print( | |
f"Unable to copy tensor to device={device}: {e}. " | |
"Your CUDA environment is broken." | |
) | |
if num_gpu > 1: | |
test_nccl_ops() | |