PeopleRemover / detectron2_repo /datasets /prepare_cocofied_lvis.py
snicolau's picture
Upload 772 files
500565b verified
raw
history blame
7.62 kB
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
import copy
import json
import os
from collections import defaultdict
# This mapping is extracted from the official LVIS mapping:
# https://github.com/lvis-dataset/lvis-api/blob/master/data/coco_to_synset.json
COCO_SYNSET_CATEGORIES = [
{"synset": "person.n.01", "coco_cat_id": 1},
{"synset": "bicycle.n.01", "coco_cat_id": 2},
{"synset": "car.n.01", "coco_cat_id": 3},
{"synset": "motorcycle.n.01", "coco_cat_id": 4},
{"synset": "airplane.n.01", "coco_cat_id": 5},
{"synset": "bus.n.01", "coco_cat_id": 6},
{"synset": "train.n.01", "coco_cat_id": 7},
{"synset": "truck.n.01", "coco_cat_id": 8},
{"synset": "boat.n.01", "coco_cat_id": 9},
{"synset": "traffic_light.n.01", "coco_cat_id": 10},
{"synset": "fireplug.n.01", "coco_cat_id": 11},
{"synset": "stop_sign.n.01", "coco_cat_id": 13},
{"synset": "parking_meter.n.01", "coco_cat_id": 14},
{"synset": "bench.n.01", "coco_cat_id": 15},
{"synset": "bird.n.01", "coco_cat_id": 16},
{"synset": "cat.n.01", "coco_cat_id": 17},
{"synset": "dog.n.01", "coco_cat_id": 18},
{"synset": "horse.n.01", "coco_cat_id": 19},
{"synset": "sheep.n.01", "coco_cat_id": 20},
{"synset": "beef.n.01", "coco_cat_id": 21},
{"synset": "elephant.n.01", "coco_cat_id": 22},
{"synset": "bear.n.01", "coco_cat_id": 23},
{"synset": "zebra.n.01", "coco_cat_id": 24},
{"synset": "giraffe.n.01", "coco_cat_id": 25},
{"synset": "backpack.n.01", "coco_cat_id": 27},
{"synset": "umbrella.n.01", "coco_cat_id": 28},
{"synset": "bag.n.04", "coco_cat_id": 31},
{"synset": "necktie.n.01", "coco_cat_id": 32},
{"synset": "bag.n.06", "coco_cat_id": 33},
{"synset": "frisbee.n.01", "coco_cat_id": 34},
{"synset": "ski.n.01", "coco_cat_id": 35},
{"synset": "snowboard.n.01", "coco_cat_id": 36},
{"synset": "ball.n.06", "coco_cat_id": 37},
{"synset": "kite.n.03", "coco_cat_id": 38},
{"synset": "baseball_bat.n.01", "coco_cat_id": 39},
{"synset": "baseball_glove.n.01", "coco_cat_id": 40},
{"synset": "skateboard.n.01", "coco_cat_id": 41},
{"synset": "surfboard.n.01", "coco_cat_id": 42},
{"synset": "tennis_racket.n.01", "coco_cat_id": 43},
{"synset": "bottle.n.01", "coco_cat_id": 44},
{"synset": "wineglass.n.01", "coco_cat_id": 46},
{"synset": "cup.n.01", "coco_cat_id": 47},
{"synset": "fork.n.01", "coco_cat_id": 48},
{"synset": "knife.n.01", "coco_cat_id": 49},
{"synset": "spoon.n.01", "coco_cat_id": 50},
{"synset": "bowl.n.03", "coco_cat_id": 51},
{"synset": "banana.n.02", "coco_cat_id": 52},
{"synset": "apple.n.01", "coco_cat_id": 53},
{"synset": "sandwich.n.01", "coco_cat_id": 54},
{"synset": "orange.n.01", "coco_cat_id": 55},
{"synset": "broccoli.n.01", "coco_cat_id": 56},
{"synset": "carrot.n.01", "coco_cat_id": 57},
{"synset": "frank.n.02", "coco_cat_id": 58},
{"synset": "pizza.n.01", "coco_cat_id": 59},
{"synset": "doughnut.n.02", "coco_cat_id": 60},
{"synset": "cake.n.03", "coco_cat_id": 61},
{"synset": "chair.n.01", "coco_cat_id": 62},
{"synset": "sofa.n.01", "coco_cat_id": 63},
{"synset": "pot.n.04", "coco_cat_id": 64},
{"synset": "bed.n.01", "coco_cat_id": 65},
{"synset": "dining_table.n.01", "coco_cat_id": 67},
{"synset": "toilet.n.02", "coco_cat_id": 70},
{"synset": "television_receiver.n.01", "coco_cat_id": 72},
{"synset": "laptop.n.01", "coco_cat_id": 73},
{"synset": "mouse.n.04", "coco_cat_id": 74},
{"synset": "remote_control.n.01", "coco_cat_id": 75},
{"synset": "computer_keyboard.n.01", "coco_cat_id": 76},
{"synset": "cellular_telephone.n.01", "coco_cat_id": 77},
{"synset": "microwave.n.02", "coco_cat_id": 78},
{"synset": "oven.n.01", "coco_cat_id": 79},
{"synset": "toaster.n.02", "coco_cat_id": 80},
{"synset": "sink.n.01", "coco_cat_id": 81},
{"synset": "electric_refrigerator.n.01", "coco_cat_id": 82},
{"synset": "book.n.01", "coco_cat_id": 84},
{"synset": "clock.n.01", "coco_cat_id": 85},
{"synset": "vase.n.01", "coco_cat_id": 86},
{"synset": "scissors.n.01", "coco_cat_id": 87},
{"synset": "teddy.n.01", "coco_cat_id": 88},
{"synset": "hand_blower.n.01", "coco_cat_id": 89},
{"synset": "toothbrush.n.01", "coco_cat_id": 90},
]
def cocofy_lvis(input_filename, output_filename):
"""
Filter LVIS instance segmentation annotations to remove all categories that are not included in
COCO. The new json files can be used to evaluate COCO AP using `lvis-api`. The category ids in
the output json are the incontiguous COCO dataset ids.
Args:
input_filename (str): path to the LVIS json file.
output_filename (str): path to the COCOfied json file.
"""
with open(input_filename, "r") as f:
lvis_json = json.load(f)
lvis_annos = lvis_json.pop("annotations")
cocofied_lvis = copy.deepcopy(lvis_json)
lvis_json["annotations"] = lvis_annos
# Mapping from lvis cat id to coco cat id via synset
lvis_cat_id_to_synset = {cat["id"]: cat["synset"] for cat in lvis_json["categories"]}
synset_to_coco_cat_id = {x["synset"]: x["coco_cat_id"] for x in COCO_SYNSET_CATEGORIES}
# Synsets that we will keep in the dataset
synsets_to_keep = set(synset_to_coco_cat_id.keys())
coco_cat_id_with_instances = defaultdict(int)
new_annos = []
ann_id = 1
for ann in lvis_annos:
lvis_cat_id = ann["category_id"]
synset = lvis_cat_id_to_synset[lvis_cat_id]
if synset not in synsets_to_keep:
continue
coco_cat_id = synset_to_coco_cat_id[synset]
new_ann = copy.deepcopy(ann)
new_ann["category_id"] = coco_cat_id
new_ann["id"] = ann_id
ann_id += 1
new_annos.append(new_ann)
coco_cat_id_with_instances[coco_cat_id] += 1
cocofied_lvis["annotations"] = new_annos
for image in cocofied_lvis["images"]:
for key in ["not_exhaustive_category_ids", "neg_category_ids"]:
new_category_list = []
for lvis_cat_id in image[key]:
synset = lvis_cat_id_to_synset[lvis_cat_id]
if synset not in synsets_to_keep:
continue
coco_cat_id = synset_to_coco_cat_id[synset]
new_category_list.append(coco_cat_id)
coco_cat_id_with_instances[coco_cat_id] += 1
image[key] = new_category_list
coco_cat_id_with_instances = set(coco_cat_id_with_instances.keys())
new_categories = []
for cat in lvis_json["categories"]:
synset = cat["synset"]
if synset not in synsets_to_keep:
continue
coco_cat_id = synset_to_coco_cat_id[synset]
if coco_cat_id not in coco_cat_id_with_instances:
continue
new_cat = copy.deepcopy(cat)
new_cat["id"] = coco_cat_id
new_categories.append(new_cat)
cocofied_lvis["categories"] = new_categories
with open(output_filename, "w") as f:
json.dump(cocofied_lvis, f)
print("{} is COCOfied and stored in {}.".format(input_filename, output_filename))
if __name__ == "__main__":
dataset_dir = os.path.join(os.getenv("DETECTRON2_DATASETS", "datasets"), "lvis")
for s in ["lvis_v0.5_train", "lvis_v0.5_val"]:
print("Start COCOfing {}.".format(s))
cocofy_lvis(
os.path.join(dataset_dir, "{}.json".format(s)),
os.path.join(dataset_dir, "{}_cocofied.json".format(s)),
)