Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
import logging | |
from datetime import timedelta | |
import torch | |
import torch.distributed as dist | |
import torch.multiprocessing as mp | |
from detectron2.utils import comm | |
__all__ = ["DEFAULT_TIMEOUT", "launch"] | |
DEFAULT_TIMEOUT = timedelta(minutes=30) | |
def _find_free_port(): | |
import socket | |
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) | |
# Binding to port 0 will cause the OS to find an available port for us | |
sock.bind(("", 0)) | |
port = sock.getsockname()[1] | |
sock.close() | |
# NOTE: there is still a chance the port could be taken by other processes. | |
return port | |
def launch( | |
main_func, | |
num_gpus_per_machine, | |
num_machines=1, | |
machine_rank=0, | |
dist_url=None, | |
args=(), | |
timeout=DEFAULT_TIMEOUT, | |
): | |
""" | |
Launch multi-gpu or distributed training. | |
This function must be called on all machines involved in the training. | |
It will spawn child processes (defined by ``num_gpus_per_machine``) on each machine. | |
Args: | |
main_func: a function that will be called by `main_func(*args)` | |
num_gpus_per_machine (int): number of GPUs per machine | |
num_machines (int): the total number of machines | |
machine_rank (int): the rank of this machine | |
dist_url (str): url to connect to for distributed jobs, including protocol | |
e.g. "tcp://127.0.0.1:8686". | |
Can be set to "auto" to automatically select a free port on localhost | |
timeout (timedelta): timeout of the distributed workers | |
args (tuple): arguments passed to main_func | |
""" | |
world_size = num_machines * num_gpus_per_machine | |
if world_size > 1: | |
# https://github.com/pytorch/pytorch/pull/14391 | |
# TODO prctl in spawned processes | |
if dist_url == "auto": | |
assert num_machines == 1, "dist_url=auto not supported in multi-machine jobs." | |
port = _find_free_port() | |
dist_url = f"tcp://127.0.0.1:{port}" | |
if num_machines > 1 and dist_url.startswith("file://"): | |
logger = logging.getLogger(__name__) | |
logger.warning( | |
"file:// is not a reliable init_method in multi-machine jobs. Prefer tcp://" | |
) | |
mp.spawn( | |
_distributed_worker, | |
nprocs=num_gpus_per_machine, | |
args=( | |
main_func, | |
world_size, | |
num_gpus_per_machine, | |
machine_rank, | |
dist_url, | |
args, | |
timeout, | |
), | |
daemon=False, | |
) | |
else: | |
main_func(*args) | |
def _distributed_worker( | |
local_rank, | |
main_func, | |
world_size, | |
num_gpus_per_machine, | |
machine_rank, | |
dist_url, | |
args, | |
timeout=DEFAULT_TIMEOUT, | |
): | |
assert torch.cuda.is_available(), "cuda is not available. Please check your installation." | |
global_rank = machine_rank * num_gpus_per_machine + local_rank | |
try: | |
dist.init_process_group( | |
backend="NCCL", | |
init_method=dist_url, | |
world_size=world_size, | |
rank=global_rank, | |
timeout=timeout, | |
) | |
except Exception as e: | |
logger = logging.getLogger(__name__) | |
logger.error("Process group URL: {}".format(dist_url)) | |
raise e | |
# Setup the local process group (which contains ranks within the same machine) | |
assert comm._LOCAL_PROCESS_GROUP is None | |
num_machines = world_size // num_gpus_per_machine | |
for i in range(num_machines): | |
ranks_on_i = list(range(i * num_gpus_per_machine, (i + 1) * num_gpus_per_machine)) | |
pg = dist.new_group(ranks_on_i) | |
if i == machine_rank: | |
comm._LOCAL_PROCESS_GROUP = pg | |
assert num_gpus_per_machine <= torch.cuda.device_count() | |
torch.cuda.set_device(local_rank) | |
# synchronize is needed here to prevent a possible timeout after calling init_process_group | |
# See: https://github.com/facebookresearch/maskrcnn-benchmark/issues/172 | |
comm.synchronize() | |
main_func(*args) | |