Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
import io | |
import numpy as np | |
import torch | |
from detectron2 import model_zoo | |
from detectron2.data import DatasetCatalog | |
from detectron2.data.detection_utils import read_image | |
from detectron2.modeling import build_model | |
from detectron2.structures import Boxes, Instances, ROIMasks | |
from detectron2.utils.file_io import PathManager | |
""" | |
Internal utilities for tests. Don't use except for writing tests. | |
""" | |
def get_model_no_weights(config_path): | |
""" | |
Like model_zoo.get, but do not load any weights (even pretrained) | |
""" | |
cfg = model_zoo.get_config(config_path) | |
if not torch.cuda.is_available(): | |
cfg.MODEL.DEVICE = "cpu" | |
return build_model(cfg) | |
def random_boxes(num_boxes, max_coord=100, device="cpu"): | |
""" | |
Create a random Nx4 boxes tensor, with coordinates < max_coord. | |
""" | |
boxes = torch.rand(num_boxes, 4, device=device) * (max_coord * 0.5) | |
boxes.clamp_(min=1.0) # tiny boxes cause numerical instability in box regression | |
# Note: the implementation of this function in torchvision is: | |
# boxes[:, 2:] += torch.rand(N, 2) * 100 | |
# but it does not guarantee non-negative widths/heights constraints: | |
# boxes[:, 2] >= boxes[:, 0] and boxes[:, 3] >= boxes[:, 1]: | |
boxes[:, 2:] += boxes[:, :2] | |
return boxes | |
def get_sample_coco_image(tensor=True): | |
""" | |
Args: | |
tensor (bool): if True, returns 3xHxW tensor. | |
else, returns a HxWx3 numpy array. | |
Returns: | |
an image, in BGR color. | |
""" | |
try: | |
file_name = DatasetCatalog.get("coco_2017_val_100")[0]["file_name"] | |
if not PathManager.exists(file_name): | |
raise FileNotFoundError() | |
except IOError: | |
# for public CI to run | |
file_name = "http://images.cocodataset.org/train2017/000000000009.jpg" | |
ret = read_image(file_name, format="BGR") | |
if tensor: | |
ret = torch.from_numpy(np.ascontiguousarray(ret.transpose(2, 0, 1))) | |
return ret | |
def convert_scripted_instances(instances): | |
""" | |
Convert a scripted Instances object to a regular :class:`Instances` object | |
""" | |
ret = Instances(instances.image_size) | |
for name in instances._field_names: | |
val = getattr(instances, "_" + name, None) | |
if val is not None: | |
ret.set(name, val) | |
return ret | |
def assert_instances_allclose(input, other, *, rtol=1e-5, msg="", size_as_tensor=False): | |
""" | |
Args: | |
input, other (Instances): | |
size_as_tensor: compare image_size of the Instances as tensors (instead of tuples). | |
Useful for comparing outputs of tracing. | |
""" | |
if not isinstance(input, Instances): | |
input = convert_scripted_instances(input) | |
if not isinstance(other, Instances): | |
other = convert_scripted_instances(other) | |
if not msg: | |
msg = "Two Instances are different! " | |
else: | |
msg = msg.rstrip() + " " | |
size_error_msg = msg + f"image_size is {input.image_size} vs. {other.image_size}!" | |
if size_as_tensor: | |
assert torch.equal( | |
torch.tensor(input.image_size), torch.tensor(other.image_size) | |
), size_error_msg | |
else: | |
assert input.image_size == other.image_size, size_error_msg | |
fields = sorted(input.get_fields().keys()) | |
fields_other = sorted(other.get_fields().keys()) | |
assert fields == fields_other, msg + f"Fields are {fields} vs {fields_other}!" | |
for f in fields: | |
val1, val2 = input.get(f), other.get(f) | |
if isinstance(val1, (Boxes, ROIMasks)): | |
# boxes in the range of O(100) and can have a larger tolerance | |
assert torch.allclose(val1.tensor, val2.tensor, atol=100 * rtol), ( | |
msg + f"Field {f} differs too much!" | |
) | |
elif isinstance(val1, torch.Tensor): | |
if val1.dtype.is_floating_point: | |
mag = torch.abs(val1).max().cpu().item() | |
assert torch.allclose(val1, val2, atol=mag * rtol), ( | |
msg + f"Field {f} differs too much!" | |
) | |
else: | |
assert torch.equal(val1, val2), msg + f"Field {f} is different!" | |
else: | |
raise ValueError(f"Don't know how to compare type {type(val1)}") | |
def reload_script_model(module): | |
""" | |
Save a jit module and load it back. | |
Similar to the `getExportImportCopy` function in torch/testing/ | |
""" | |
buffer = io.BytesIO() | |
torch.jit.save(module, buffer) | |
buffer.seek(0) | |
return torch.jit.load(buffer) | |