Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +158 -22
- lama_inpaint.py +205 -0
app.py
CHANGED
@@ -1,29 +1,165 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from PIL import Image
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
|
19 |
-
return
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
# sys.path.append(os.path.abspath(os.path.dirname(os.getcwd())))
|
4 |
+
# os.chdir("../")
|
5 |
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
from pathlib import Path
|
8 |
+
from matplotlib import pyplot as plt
|
9 |
+
import torch
|
10 |
+
import tempfile
|
11 |
+
from lama_inpaint import inpaint_img_with_lama, build_lama_model, inpaint_img_with_builded_lama
|
12 |
+
#from utils import load_img_to_array, save_array_to_img, dilate_mask, \
|
13 |
+
# show_mask, show_points
|
14 |
from PIL import Image
|
15 |
+
sys.path.insert(0, str(Path(__file__).resolve().parent / "third_party" / "segment-anything"))
|
16 |
+
import argparse
|
17 |
+
|
18 |
+
import os
|
19 |
+
import matplotlib.pyplot as plt
|
20 |
+
from pylab import imshow, imsave
|
21 |
+
|
22 |
+
|
23 |
+
import detectron2
|
24 |
+
from detectron2.utils.logger import setup_logger
|
25 |
+
setup_logger()
|
26 |
+
|
27 |
+
import numpy as np
|
28 |
+
import cv2
|
29 |
+
import torch
|
30 |
+
|
31 |
+
from detectron2 import model_zoo
|
32 |
+
from detectron2.engine import DefaultPredictor
|
33 |
+
from detectron2.config import get_cfg
|
34 |
+
from detectron2.utils.visualizer import Visualizer, ColorMode
|
35 |
+
from detectron2.data import MetadataCatalog
|
36 |
+
coco_metadata = MetadataCatalog.get("coco_2017_val")
|
37 |
+
|
38 |
+
# import PointRend project
|
39 |
+
from detectron2.projects import point_rend
|
40 |
+
|
41 |
+
|
42 |
+
title = "PeopleRemover"
|
43 |
+
description = """
|
44 |
+
In this space, you can remove the amount of people you want from a picture.
|
45 |
+
β οΈ This is just a demo version!
|
46 |
+
"""
|
47 |
+
|
48 |
+
def setup_args(parser):
|
49 |
+
parser.add_argument(
|
50 |
+
"--lama_config", type=str,
|
51 |
+
default="./third_party/lama/configs/prediction/default.yaml",
|
52 |
+
help="The path to the config file of lama model. "
|
53 |
+
"Default: the config of big-lama",
|
54 |
)
|
55 |
+
parser.add_argument(
|
56 |
+
"--lama_ckpt", type=str,
|
57 |
+
default="pretrained_models/big-lama",
|
58 |
+
help="The path to the lama checkpoint.",
|
59 |
+
)
|
60 |
+
|
61 |
+
def get_mask(img, num_people_keep, dilate_kernel_size):
|
62 |
+
|
63 |
+
cfg = get_cfg()
|
64 |
+
# Add PointRend-specific config
|
65 |
+
point_rend.add_pointrend_config(cfg)
|
66 |
+
# Load a config from file
|
67 |
+
cfg.merge_from_file("detectron2_repo/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_X_101_32x8d_FPN_3x_coco.yaml")
|
68 |
+
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model
|
69 |
+
|
70 |
+
# Set when using CPU
|
71 |
+
cfg.MODEL.DEVICE='cpu'
|
72 |
+
|
73 |
+
# Use a model from PointRend model zoo: https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend#pretrained-models
|
74 |
+
cfg.MODEL.WEIGHTS = "detectron2://PointRend/InstanceSegmentation/pointrend_rcnn_X_101_32x8d_FPN_3x_coco/28119989/model_final_ba17b9.pkl"
|
75 |
+
predictor = DefaultPredictor(cfg)
|
76 |
+
outputs = predictor(img)
|
77 |
+
|
78 |
+
# Select 'people' instances
|
79 |
+
people_instances = outputs["instances"][outputs["instances"].pred_classes == 0]
|
80 |
+
|
81 |
+
# Eliminate the instances of the people we want to keep
|
82 |
+
eliminate_instances = people_instances[num_people_keep:]
|
83 |
+
|
84 |
+
# Generate mask
|
85 |
+
blank_mask = np.ones((image.shape[0],img.shape[1]), dtype=np.uint8) * 255
|
86 |
+
full_mask = np.zeros((image.shape[0],img.shape[1]), dtype=np.uint8) * 255
|
87 |
+
|
88 |
+
for instance_mask in eliminate_instances.pred_masks:
|
89 |
+
full_mask = full_mask + blank_mask*instance_mask.to("cpu").numpy()
|
90 |
+
|
91 |
+
full_mask = full_mask.reshape((img.shape[0],img.shape[1],1))
|
92 |
+
mask = (cv2.cvtColor(full_mask, cv2.COLOR_GRAY2RGBA)).astype(np.uint8)
|
93 |
|
94 |
+
# Dilation
|
95 |
+
kernel = np.ones((dilate_kernel_size, dilate_kernel_size), np.uint8)
|
96 |
+
mask_dilation = cv2.dilate(mask, kernel, iterations=2)
|
97 |
|
98 |
+
return mask_dilation
|
99 |
|
100 |
+
def get_inpainted_img(img, mask):
|
101 |
+
lama_config = args.lama_config
|
102 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
103 |
+
out = []
|
104 |
+
img_inpainted = inpaint_img_with_builded_lama(
|
105 |
+
model['lama'], img, mask, lama_config, device=device)
|
106 |
+
out.append(img_inpainted)
|
107 |
+
return out
|
108 |
+
|
109 |
+
|
110 |
+
def remove_people(img, num_people_keep, dilate_kernel_size):
|
111 |
+
|
112 |
+
mask = get_mask(img, num_people_keep, dilate_kernel_size)
|
113 |
+
|
114 |
+
out = get_inpainted_img(img, mask)
|
115 |
+
|
116 |
+
return out
|
117 |
+
|
118 |
+
|
119 |
+
# get args
|
120 |
+
parser = argparse.ArgumentParser()
|
121 |
+
setup_args(parser)
|
122 |
+
args = parser.parse_args(sys.argv[1:])
|
123 |
+
# build models
|
124 |
+
model = {}
|
125 |
+
|
126 |
+
# build the lama model
|
127 |
+
lama_config = args.lama_config
|
128 |
+
lama_ckpt = args.lama_ckpt
|
129 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
130 |
+
model['lama'] = build_lama_model(lama_config, lama_ckpt, device=device)
|
131 |
+
|
132 |
+
|
133 |
+
with gr.Blocks() as demo:
|
134 |
+
features = gr.State(None)
|
135 |
+
|
136 |
+
num_people_keep = gr.Number(label="Number of people to keep", minimum=0, maximum=100)
|
137 |
+
dilate_kernel_size = gr.Slider(label="Dilate Kernel Size", minimum=0, maximum=30, step=1, value=5)
|
138 |
+
|
139 |
+
lama = gr.Button("Inpaint Image", variant="primary").style(full_width=True, size="sm")
|
140 |
+
clear_button_image = gr.Button(value="Reset", label="Reset", variant="secondary").style(full_width=True, size="sm")
|
141 |
+
|
142 |
+
img = gr.Image(label="Input Image").style(height="200px")
|
143 |
+
|
144 |
+
#mask = gr.outputs.Image(type="numpy", label="Segmentation Mask").style(height="200px")
|
145 |
+
|
146 |
+
img_out = gr.outputs.Image(
|
147 |
+
type="numpy", label="Image with People Removed").style(height="200px")
|
148 |
+
|
149 |
+
lama.click(
|
150 |
+
get_inpainted_img,
|
151 |
+
[img, num_people_keep, dilate_kernel_size],
|
152 |
+
[img_out]
|
153 |
+
)
|
154 |
+
|
155 |
+
def reset(*args):
|
156 |
+
return [None for _ in args]
|
157 |
+
|
158 |
+
clear_button_image.click(
|
159 |
+
reset,
|
160 |
+
[img, features, img_out],
|
161 |
+
[img, features, img_out]
|
162 |
+
)
|
163 |
|
164 |
+
if __name__ == "__main__":
|
165 |
+
demo.launch()
|
lama_inpaint.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import yaml
|
6 |
+
import glob
|
7 |
+
import argparse
|
8 |
+
from PIL import Image
|
9 |
+
from omegaconf import OmegaConf
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
os.environ['OMP_NUM_THREADS'] = '1'
|
13 |
+
os.environ['OPENBLAS_NUM_THREADS'] = '1'
|
14 |
+
os.environ['MKL_NUM_THREADS'] = '1'
|
15 |
+
os.environ['VECLIB_MAXIMUM_THREADS'] = '1'
|
16 |
+
os.environ['NUMEXPR_NUM_THREADS'] = '1'
|
17 |
+
|
18 |
+
sys.path.insert(0, str(Path(__file__).resolve().parent / "third_party" / "lama"))
|
19 |
+
|
20 |
+
from saicinpainting.evaluation.utils import move_to_device
|
21 |
+
from saicinpainting.training.trainers import load_checkpoint
|
22 |
+
from saicinpainting.evaluation.data import pad_tensor_to_modulo
|
23 |
+
|
24 |
+
from utils import load_img_to_array, save_array_to_img
|
25 |
+
|
26 |
+
|
27 |
+
@torch.no_grad()
|
28 |
+
def inpaint_img_with_lama(
|
29 |
+
img: np.ndarray,
|
30 |
+
mask: np.ndarray,
|
31 |
+
config_p: str,
|
32 |
+
ckpt_p: str,
|
33 |
+
mod=8,
|
34 |
+
device="cuda"
|
35 |
+
):
|
36 |
+
assert len(mask.shape) == 2
|
37 |
+
if np.max(mask) == 1:
|
38 |
+
mask = mask * 255
|
39 |
+
img = torch.from_numpy(img).float().div(255.)
|
40 |
+
mask = torch.from_numpy(mask).float()
|
41 |
+
predict_config = OmegaConf.load(config_p)
|
42 |
+
predict_config.model.path = ckpt_p
|
43 |
+
# device = torch.device(predict_config.device)
|
44 |
+
device = torch.device(device)
|
45 |
+
|
46 |
+
train_config_path = os.path.join(
|
47 |
+
predict_config.model.path, 'config.yaml')
|
48 |
+
|
49 |
+
with open(train_config_path, 'r') as f:
|
50 |
+
train_config = OmegaConf.create(yaml.safe_load(f))
|
51 |
+
|
52 |
+
train_config.training_model.predict_only = True
|
53 |
+
train_config.visualizer.kind = 'noop'
|
54 |
+
|
55 |
+
checkpoint_path = os.path.join(
|
56 |
+
predict_config.model.path, 'models',
|
57 |
+
predict_config.model.checkpoint
|
58 |
+
)
|
59 |
+
model = load_checkpoint(
|
60 |
+
train_config, checkpoint_path, strict=False, map_location=device)
|
61 |
+
model.freeze()
|
62 |
+
if not predict_config.get('refine', False):
|
63 |
+
model.to(device)
|
64 |
+
|
65 |
+
batch = {}
|
66 |
+
batch['image'] = img.permute(2, 0, 1).unsqueeze(0)
|
67 |
+
batch['mask'] = mask[None, None]
|
68 |
+
unpad_to_size = [batch['image'].shape[2], batch['image'].shape[3]]
|
69 |
+
batch['image'] = pad_tensor_to_modulo(batch['image'], mod)
|
70 |
+
batch['mask'] = pad_tensor_to_modulo(batch['mask'], mod)
|
71 |
+
batch = move_to_device(batch, device)
|
72 |
+
batch['mask'] = (batch['mask'] > 0) * 1
|
73 |
+
|
74 |
+
batch = model(batch)
|
75 |
+
cur_res = batch[predict_config.out_key][0].permute(1, 2, 0)
|
76 |
+
cur_res = cur_res.detach().cpu().numpy()
|
77 |
+
|
78 |
+
if unpad_to_size is not None:
|
79 |
+
orig_height, orig_width = unpad_to_size
|
80 |
+
cur_res = cur_res[:orig_height, :orig_width]
|
81 |
+
|
82 |
+
cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8')
|
83 |
+
return cur_res
|
84 |
+
|
85 |
+
|
86 |
+
def build_lama_model(
|
87 |
+
config_p: str,
|
88 |
+
ckpt_p: str,
|
89 |
+
device="cuda"
|
90 |
+
):
|
91 |
+
predict_config = OmegaConf.load(config_p)
|
92 |
+
predict_config.model.path = ckpt_p
|
93 |
+
# device = torch.device(predict_config.device)
|
94 |
+
device = torch.device(device)
|
95 |
+
|
96 |
+
train_config_path = os.path.join(
|
97 |
+
predict_config.model.path, 'config.yaml')
|
98 |
+
|
99 |
+
with open(train_config_path, 'r') as f:
|
100 |
+
train_config = OmegaConf.create(yaml.safe_load(f))
|
101 |
+
|
102 |
+
train_config.training_model.predict_only = True
|
103 |
+
train_config.visualizer.kind = 'noop'
|
104 |
+
|
105 |
+
checkpoint_path = os.path.join(
|
106 |
+
predict_config.model.path, 'models',
|
107 |
+
predict_config.model.checkpoint
|
108 |
+
)
|
109 |
+
model = load_checkpoint(
|
110 |
+
train_config, checkpoint_path, strict=False, map_location=device)
|
111 |
+
model.freeze()
|
112 |
+
if not predict_config.get('refine', False):
|
113 |
+
model.to(device)
|
114 |
+
|
115 |
+
return model
|
116 |
+
|
117 |
+
|
118 |
+
@torch.no_grad()
|
119 |
+
def inpaint_img_with_builded_lama(
|
120 |
+
model,
|
121 |
+
img: np.ndarray,
|
122 |
+
mask: np.ndarray,
|
123 |
+
config_p: str,
|
124 |
+
mod=8,
|
125 |
+
device="cuda"
|
126 |
+
):
|
127 |
+
assert len(mask.shape) == 2
|
128 |
+
if np.max(mask) == 1:
|
129 |
+
mask = mask * 255
|
130 |
+
img = torch.from_numpy(img).float().div(255.)
|
131 |
+
mask = torch.from_numpy(mask).float()
|
132 |
+
predict_config = OmegaConf.load(config_p)
|
133 |
+
|
134 |
+
batch = {}
|
135 |
+
batch['image'] = img.permute(2, 0, 1).unsqueeze(0)
|
136 |
+
batch['mask'] = mask[None, None]
|
137 |
+
unpad_to_size = [batch['image'].shape[2], batch['image'].shape[3]]
|
138 |
+
batch['image'] = pad_tensor_to_modulo(batch['image'], mod)
|
139 |
+
batch['mask'] = pad_tensor_to_modulo(batch['mask'], mod)
|
140 |
+
batch = move_to_device(batch, device)
|
141 |
+
batch['mask'] = (batch['mask'] > 0) * 1
|
142 |
+
|
143 |
+
batch = model(batch)
|
144 |
+
cur_res = batch[predict_config.out_key][0].permute(1, 2, 0)
|
145 |
+
cur_res = cur_res.detach().cpu().numpy()
|
146 |
+
|
147 |
+
if unpad_to_size is not None:
|
148 |
+
orig_height, orig_width = unpad_to_size
|
149 |
+
cur_res = cur_res[:orig_height, :orig_width]
|
150 |
+
|
151 |
+
cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8')
|
152 |
+
return cur_res
|
153 |
+
|
154 |
+
|
155 |
+
def setup_args(parser):
|
156 |
+
parser.add_argument(
|
157 |
+
"--input_img", type=str, required=True,
|
158 |
+
help="Path to a single input img",
|
159 |
+
)
|
160 |
+
parser.add_argument(
|
161 |
+
"--input_mask_glob", type=str, required=True,
|
162 |
+
help="Glob to input masks",
|
163 |
+
)
|
164 |
+
parser.add_argument(
|
165 |
+
"--output_dir", type=str, required=True,
|
166 |
+
help="Output path to the directory with results.",
|
167 |
+
)
|
168 |
+
parser.add_argument(
|
169 |
+
"--lama_config", type=str,
|
170 |
+
default="./third_party/lama/configs/prediction/default.yaml",
|
171 |
+
help="The path to the config file of lama model. "
|
172 |
+
"Default: the config of big-lama",
|
173 |
+
)
|
174 |
+
parser.add_argument(
|
175 |
+
"--lama_ckpt", type=str, required=True,
|
176 |
+
help="The path to the lama checkpoint.",
|
177 |
+
)
|
178 |
+
|
179 |
+
|
180 |
+
if __name__ == "__main__":
|
181 |
+
"""Example usage:
|
182 |
+
python lama_inpaint.py \
|
183 |
+
--input_img FA_demo/FA1_dog.png \
|
184 |
+
--input_mask_glob "results/FA1_dog/mask*.png" \
|
185 |
+
--output_dir results \
|
186 |
+
--lama_config lama/configs/prediction/default.yaml \
|
187 |
+
--lama_ckpt big-lama
|
188 |
+
"""
|
189 |
+
parser = argparse.ArgumentParser()
|
190 |
+
setup_args(parser)
|
191 |
+
args = parser.parse_args(sys.argv[1:])
|
192 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
193 |
+
|
194 |
+
img_stem = Path(args.input_img).stem
|
195 |
+
mask_ps = sorted(glob.glob(args.input_mask_glob))
|
196 |
+
out_dir = Path(args.output_dir) / img_stem
|
197 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
198 |
+
|
199 |
+
img = load_img_to_array(args.input_img)
|
200 |
+
for mask_p in mask_ps:
|
201 |
+
mask = load_img_to_array(mask_p)
|
202 |
+
img_inpainted_p = out_dir / f"inpainted_with_{Path(mask_p).name}"
|
203 |
+
img_inpainted = inpaint_img_with_lama(
|
204 |
+
img, mask, args.lama_config, args.lama_ckpt, device=device)
|
205 |
+
save_array_to_img(img_inpainted, img_inpainted_p)
|