# Copyright (c) Facebook, Inc. and its affiliates. import logging from typing import List, Optional, Tuple import torch from fvcore.nn import sigmoid_focal_loss_jit from torch import Tensor, nn from torch.nn import functional as F from detectron2.layers import ShapeSpec, batched_nms from detectron2.structures import Boxes, ImageList, Instances, pairwise_point_box_distance from detectron2.utils.events import get_event_storage from ..anchor_generator import DefaultAnchorGenerator from ..backbone import Backbone from ..box_regression import Box2BoxTransformLinear, _dense_box_regression_loss from .dense_detector import DenseDetector from .retinanet import RetinaNetHead __all__ = ["FCOS"] logger = logging.getLogger(__name__) class FCOS(DenseDetector): """ Implement FCOS in :paper:`fcos`. """ def __init__( self, *, backbone: Backbone, head: nn.Module, head_in_features: Optional[List[str]] = None, box2box_transform=None, num_classes, center_sampling_radius: float = 1.5, focal_loss_alpha=0.25, focal_loss_gamma=2.0, test_score_thresh=0.2, test_topk_candidates=1000, test_nms_thresh=0.6, max_detections_per_image=100, pixel_mean, pixel_std, ): """ Args: center_sampling_radius: radius of the "center" of a groundtruth box, within which all anchor points are labeled positive. Other arguments mean the same as in :class:`RetinaNet`. """ super().__init__( backbone, head, head_in_features, pixel_mean=pixel_mean, pixel_std=pixel_std ) self.num_classes = num_classes # FCOS uses one anchor point per location. # We represent the anchor point by a box whose size equals the anchor stride. feature_shapes = backbone.output_shape() fpn_strides = [feature_shapes[k].stride for k in self.head_in_features] self.anchor_generator = DefaultAnchorGenerator( sizes=[[k] for k in fpn_strides], aspect_ratios=[1.0], strides=fpn_strides ) # FCOS parameterizes box regression by a linear transform, # where predictions are normalized by anchor stride (equal to anchor size). if box2box_transform is None: box2box_transform = Box2BoxTransformLinear(normalize_by_size=True) self.box2box_transform = box2box_transform self.center_sampling_radius = float(center_sampling_radius) # Loss parameters: self.focal_loss_alpha = focal_loss_alpha self.focal_loss_gamma = focal_loss_gamma # Inference parameters: self.test_score_thresh = test_score_thresh self.test_topk_candidates = test_topk_candidates self.test_nms_thresh = test_nms_thresh self.max_detections_per_image = max_detections_per_image def forward_training(self, images, features, predictions, gt_instances): # Transpose the Hi*Wi*A dimension to the middle: pred_logits, pred_anchor_deltas, pred_centerness = self._transpose_dense_predictions( predictions, [self.num_classes, 4, 1] ) anchors = self.anchor_generator(features) gt_labels, gt_boxes = self.label_anchors(anchors, gt_instances) return self.losses( anchors, pred_logits, gt_labels, pred_anchor_deltas, gt_boxes, pred_centerness ) @torch.no_grad() def match_anchors(self, anchors: List[Boxes], gt_instances: List[Instances]): """ Match anchors with ground truth boxes. Args: anchors: #level boxes, from the highest resolution to lower resolution gt_instances: ground truth instances per image Returns: List[Tensor]: #image tensors, each is a vector of matched gt indices (or -1 for unmatched anchors) for all anchors. """ num_anchors_per_level = [len(x) for x in anchors] anchors = Boxes.cat(anchors) # Rx4 anchor_centers = anchors.get_centers() # Rx2 anchor_sizes = anchors.tensor[:, 2] - anchors.tensor[:, 0] # R lower_bound = anchor_sizes * 4 lower_bound[: num_anchors_per_level[0]] = 0 upper_bound = anchor_sizes * 8 upper_bound[-num_anchors_per_level[-1] :] = float("inf") matched_indices = [] for gt_per_image in gt_instances: gt_centers = gt_per_image.gt_boxes.get_centers() # Nx2 # FCOS with center sampling: anchor point must be close enough to gt center. pairwise_match = (anchor_centers[:, None, :] - gt_centers[None, :, :]).abs_().max( dim=2 ).values < self.center_sampling_radius * anchor_sizes[:, None] pairwise_dist = pairwise_point_box_distance(anchor_centers, gt_per_image.gt_boxes) # The original FCOS anchor matching rule: anchor point must be inside gt pairwise_match &= pairwise_dist.min(dim=2).values > 0 # Multilevel anchor matching in FCOS: each anchor is only responsible # for certain scale range. pairwise_dist = pairwise_dist.max(dim=2).values pairwise_match &= (pairwise_dist > lower_bound[:, None]) & ( pairwise_dist < upper_bound[:, None] ) # Match the GT box with minimum area, if there are multiple GT matches gt_areas = gt_per_image.gt_boxes.area() # N pairwise_match = pairwise_match.to(torch.float32) * (1e8 - gt_areas[None, :]) min_values, matched_idx = pairwise_match.max(dim=1) # R, per-anchor match matched_idx[min_values < 1e-5] = -1 # Unmatched anchors are assigned -1 matched_indices.append(matched_idx) return matched_indices @torch.no_grad() def label_anchors(self, anchors, gt_instances): """ Same interface as :meth:`RetinaNet.label_anchors`, but implemented with FCOS anchor matching rule. Unlike RetinaNet, there are no ignored anchors. """ matched_indices = self.match_anchors(anchors, gt_instances) matched_labels, matched_boxes = [], [] for gt_index, gt_per_image in zip(matched_indices, gt_instances): label = gt_per_image.gt_classes[gt_index.clip(min=0)] label[gt_index < 0] = self.num_classes # background matched_gt_boxes = gt_per_image.gt_boxes[gt_index.clip(min=0)] matched_labels.append(label) matched_boxes.append(matched_gt_boxes) return matched_labels, matched_boxes def losses( self, anchors, pred_logits, gt_labels, pred_anchor_deltas, gt_boxes, pred_centerness ): """ This method is almost identical to :meth:`RetinaNet.losses`, with an extra "loss_centerness" in the returned dict. """ num_images = len(gt_labels) gt_labels = torch.stack(gt_labels) # (N, R) pos_mask = (gt_labels >= 0) & (gt_labels != self.num_classes) num_pos_anchors = pos_mask.sum().item() get_event_storage().put_scalar("num_pos_anchors", num_pos_anchors / num_images) normalizer = self._ema_update("loss_normalizer", max(num_pos_anchors, 1), 300) # classification and regression loss gt_labels_target = F.one_hot(gt_labels, num_classes=self.num_classes + 1)[ :, :, :-1 ] # no loss for the last (background) class loss_cls = sigmoid_focal_loss_jit( torch.cat(pred_logits, dim=1), gt_labels_target.to(pred_logits[0].dtype), alpha=self.focal_loss_alpha, gamma=self.focal_loss_gamma, reduction="sum", ) loss_box_reg = _dense_box_regression_loss( anchors, self.box2box_transform, pred_anchor_deltas, [x.tensor for x in gt_boxes], pos_mask, box_reg_loss_type="giou", ) ctrness_targets = self.compute_ctrness_targets(anchors, gt_boxes) # NxR pred_centerness = torch.cat(pred_centerness, dim=1).squeeze(dim=2) # NxR ctrness_loss = F.binary_cross_entropy_with_logits( pred_centerness[pos_mask], ctrness_targets[pos_mask], reduction="sum" ) return { "loss_fcos_cls": loss_cls / normalizer, "loss_fcos_loc": loss_box_reg / normalizer, "loss_fcos_ctr": ctrness_loss / normalizer, } def compute_ctrness_targets(self, anchors, gt_boxes): # NxR anchors = Boxes.cat(anchors).tensor # Rx4 reg_targets = [self.box2box_transform.get_deltas(anchors, m.tensor) for m in gt_boxes] reg_targets = torch.stack(reg_targets, dim=0) # NxRx4 if len(reg_targets) == 0: return reg_targets.new_zeros(len(reg_targets)) left_right = reg_targets[:, :, [0, 2]] top_bottom = reg_targets[:, :, [1, 3]] ctrness = (left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * ( top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0] ) return torch.sqrt(ctrness) def forward_inference( self, images: ImageList, features: List[Tensor], predictions: List[List[Tensor]] ): pred_logits, pred_anchor_deltas, pred_centerness = self._transpose_dense_predictions( predictions, [self.num_classes, 4, 1] ) anchors = self.anchor_generator(features) results: List[Instances] = [] for img_idx, image_size in enumerate(images.image_sizes): scores_per_image = [ # Multiply and sqrt centerness & classification scores # (See eqn. 4 in https://arxiv.org/abs/2006.09214) torch.sqrt(x[img_idx].sigmoid_() * y[img_idx].sigmoid_()) for x, y in zip(pred_logits, pred_centerness) ] deltas_per_image = [x[img_idx] for x in pred_anchor_deltas] results_per_image = self.inference_single_image( anchors, scores_per_image, deltas_per_image, image_size ) results.append(results_per_image) return results def inference_single_image( self, anchors: List[Boxes], box_cls: List[Tensor], box_delta: List[Tensor], image_size: Tuple[int, int], ): """ Identical to :meth:`RetinaNet.inference_single_image. """ pred = self._decode_multi_level_predictions( anchors, box_cls, box_delta, self.test_score_thresh, self.test_topk_candidates, image_size, ) keep = batched_nms( pred.pred_boxes.tensor, pred.scores, pred.pred_classes, self.test_nms_thresh ) return pred[keep[: self.max_detections_per_image]] class FCOSHead(RetinaNetHead): """ The head used in :paper:`fcos`. It adds an additional centerness prediction branch on top of :class:`RetinaNetHead`. """ def __init__(self, *, input_shape: List[ShapeSpec], conv_dims: List[int], **kwargs): super().__init__(input_shape=input_shape, conv_dims=conv_dims, num_anchors=1, **kwargs) # Unlike original FCOS, we do not add an additional learnable scale layer # because it's found to have no benefits after normalizing regression targets by stride. self._num_features = len(input_shape) self.ctrness = nn.Conv2d(conv_dims[-1], 1, kernel_size=3, stride=1, padding=1) torch.nn.init.normal_(self.ctrness.weight, std=0.01) torch.nn.init.constant_(self.ctrness.bias, 0) def forward(self, features): assert len(features) == self._num_features logits = [] bbox_reg = [] ctrness = [] for feature in features: logits.append(self.cls_score(self.cls_subnet(feature))) bbox_feature = self.bbox_subnet(feature) bbox_reg.append(self.bbox_pred(bbox_feature)) ctrness.append(self.ctrness(bbox_feature)) return logits, bbox_reg, ctrness