# Copyright (c) Facebook, Inc. and its affiliates. import logging import unittest import torch from detectron2.modeling.box_regression import Box2BoxTransform, Box2BoxTransformRotated from detectron2.utils.testing import random_boxes logger = logging.getLogger(__name__) class TestBox2BoxTransform(unittest.TestCase): def test_reconstruction(self): weights = (5, 5, 10, 10) b2b_tfm = Box2BoxTransform(weights=weights) src_boxes = random_boxes(10) dst_boxes = random_boxes(10) devices = [torch.device("cpu")] if torch.cuda.is_available(): devices.append(torch.device("cuda")) for device in devices: src_boxes = src_boxes.to(device=device) dst_boxes = dst_boxes.to(device=device) deltas = b2b_tfm.get_deltas(src_boxes, dst_boxes) dst_boxes_reconstructed = b2b_tfm.apply_deltas(deltas, src_boxes) self.assertTrue(torch.allclose(dst_boxes, dst_boxes_reconstructed)) def test_apply_deltas_tracing(self): weights = (5, 5, 10, 10) b2b_tfm = Box2BoxTransform(weights=weights) with torch.no_grad(): func = torch.jit.trace(b2b_tfm.apply_deltas, (torch.randn(10, 20), torch.randn(10, 4))) o = func(torch.randn(10, 20), torch.randn(10, 4)) self.assertEqual(o.shape, (10, 20)) o = func(torch.randn(5, 20), torch.randn(5, 4)) self.assertEqual(o.shape, (5, 20)) def random_rotated_boxes(mean_box, std_length, std_angle, N): return torch.cat( [torch.rand(N, 4) * std_length, torch.rand(N, 1) * std_angle], dim=1 ) + torch.tensor(mean_box, dtype=torch.float) class TestBox2BoxTransformRotated(unittest.TestCase): def test_reconstruction(self): weights = (5, 5, 10, 10, 1) b2b_transform = Box2BoxTransformRotated(weights=weights) src_boxes = random_rotated_boxes([10, 10, 20, 20, -30], 5, 60.0, 10) dst_boxes = random_rotated_boxes([10, 10, 20, 20, -30], 5, 60.0, 10) devices = [torch.device("cpu")] if torch.cuda.is_available(): devices.append(torch.device("cuda")) for device in devices: src_boxes = src_boxes.to(device=device) dst_boxes = dst_boxes.to(device=device) deltas = b2b_transform.get_deltas(src_boxes, dst_boxes) dst_boxes_reconstructed = b2b_transform.apply_deltas(deltas, src_boxes) assert torch.allclose(dst_boxes[:, :4], dst_boxes_reconstructed[:, :4], atol=1e-5) # angle difference has to be normalized assert torch.allclose( (dst_boxes[:, 4] - dst_boxes_reconstructed[:, 4] + 180.0) % 360.0 - 180.0, torch.zeros_like(dst_boxes[:, 4]), atol=1e-4, ) if __name__ == "__main__": unittest.main()