# Copyright (c) Facebook, Inc. and its affiliates. import json import os import tempfile import unittest import torch from torch import Tensor, nn from detectron2 import model_zoo from detectron2.config import get_cfg from detectron2.config.instantiate import dump_dataclass, instantiate from detectron2.export import dump_torchscript_IR, scripting_with_instances from detectron2.export.flatten import TracingAdapter, flatten_to_tuple from detectron2.export.torchscript_patch import patch_builtin_len from detectron2.layers import ShapeSpec from detectron2.modeling import build_backbone from detectron2.modeling.postprocessing import detector_postprocess from detectron2.modeling.roi_heads import KRCNNConvDeconvUpsampleHead from detectron2.structures import Boxes, Instances from detectron2.utils.testing import ( assert_instances_allclose, convert_scripted_instances, get_sample_coco_image, random_boxes, ) """ https://detectron2.readthedocs.io/tutorials/deployment.html contains some explanations of this file. """ class TestScripting(unittest.TestCase): def testMaskRCNNFPN(self): self._test_rcnn_model("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") def testMaskRCNNC4(self): self._test_rcnn_model("COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml") def testRetinaNet(self): self._test_retinanet_model("COCO-Detection/retinanet_R_50_FPN_3x.yaml") def _test_rcnn_model(self, config_path): model = model_zoo.get(config_path, trained=True) model.eval() fields = { "proposal_boxes": Boxes, "objectness_logits": Tensor, "pred_boxes": Boxes, "scores": Tensor, "pred_classes": Tensor, "pred_masks": Tensor, } script_model = scripting_with_instances(model, fields) inputs = [{"image": get_sample_coco_image()}] * 2 with torch.no_grad(): instance = model.inference(inputs, do_postprocess=False)[0] scripted_instance = script_model.inference(inputs, do_postprocess=False)[0] assert_instances_allclose(instance, scripted_instance) def _test_retinanet_model(self, config_path): model = model_zoo.get(config_path, trained=True) model.eval() fields = { "pred_boxes": Boxes, "scores": Tensor, "pred_classes": Tensor, } script_model = scripting_with_instances(model, fields) img = get_sample_coco_image() inputs = [{"image": img}] * 2 with torch.no_grad(): instance = model(inputs)[0]["instances"] scripted_instance = convert_scripted_instances(script_model(inputs)[0]) scripted_instance = detector_postprocess(scripted_instance, img.shape[1], img.shape[2]) assert_instances_allclose(instance, scripted_instance) # Note that the model currently cannot be saved and loaded into a new process: # https://github.com/pytorch/pytorch/issues/46944 class TestTracing(unittest.TestCase): def testMaskRCNNFPN(self): # TODO: this test requires manifold access, see: T88318502 def inference_func(model, image): inputs = [{"image": image}] return model.inference(inputs, do_postprocess=False)[0] self._test_model("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml", inference_func) def testMaskRCNNC4(self): def inference_func(model, image): inputs = [{"image": image}] return model.inference(inputs, do_postprocess=False)[0] self._test_model("COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml", inference_func) def testRetinaNet(self): # TODO: this test requires manifold access, see: T88318502 def inference_func(model, image): return model.forward([{"image": image}])[0]["instances"] self._test_model("COCO-Detection/retinanet_R_50_FPN_3x.yaml", inference_func) def _test_model(self, config_path, inference_func): model = model_zoo.get(config_path, trained=True) image = get_sample_coco_image() wrapper = TracingAdapter(model, image, inference_func) wrapper.eval() with torch.no_grad(): small_image = nn.functional.interpolate(image, scale_factor=0.5) # trace with a different image, and the trace must still work traced_model = torch.jit.trace(wrapper, (small_image,)) output = inference_func(model, image) traced_output = wrapper.outputs_schema(traced_model(image)) assert_instances_allclose(output, traced_output, size_as_tensor=True) def testKeypointHead(self): class M(nn.Module): def __init__(self): super().__init__() self.model = KRCNNConvDeconvUpsampleHead( ShapeSpec(channels=4, height=14, width=14), num_keypoints=17, conv_dims=(4,) ) def forward(self, x, predbox1, predbox2): inst = [ Instances((100, 100), pred_boxes=Boxes(predbox1)), Instances((100, 100), pred_boxes=Boxes(predbox2)), ] ret = self.model(x, inst) return tuple(x.pred_keypoints for x in ret) model = M() model.eval() def gen_input(num1, num2): feat = torch.randn((num1 + num2, 4, 14, 14)) box1 = random_boxes(num1) box2 = random_boxes(num2) return feat, box1, box2 with torch.no_grad(), patch_builtin_len(): trace = torch.jit.trace(model, gen_input(15, 15), check_trace=False) inputs = gen_input(12, 10) trace_outputs = trace(*inputs) true_outputs = model(*inputs) for trace_output, true_output in zip(trace_outputs, true_outputs): self.assertTrue(torch.allclose(trace_output, true_output)) class TestTorchscriptUtils(unittest.TestCase): # TODO: add test to dump scripting def test_dump_IR_tracing(self): cfg = get_cfg() cfg.MODEL.RESNETS.DEPTH = 18 cfg.MODEL.RESNETS.RES2_OUT_CHANNELS = 64 class Mod(nn.Module): def forward(self, x): return tuple(self.m(x).values()) model = Mod() model.m = build_backbone(cfg) model.eval() with torch.no_grad(): ts_model = torch.jit.trace(model, (torch.rand(2, 3, 224, 224),)) with tempfile.TemporaryDirectory(prefix="detectron2_test") as d: dump_torchscript_IR(ts_model, d) # check that the files are created for name in ["model_ts_code", "model_ts_IR", "model_ts_IR_inlined", "model"]: fname = os.path.join(d, name + ".txt") self.assertTrue(os.stat(fname).st_size > 0, fname) def test_dump_IR_function(self): @torch.jit.script def gunc(x, y): return x + y def func(x, y): return x + y + gunc(x, y) ts_model = torch.jit.trace(func, (torch.rand(3), torch.rand(3))) with tempfile.TemporaryDirectory(prefix="detectron2_test") as d: dump_torchscript_IR(ts_model, d) for name in ["model_ts_code", "model_ts_IR", "model_ts_IR_inlined"]: fname = os.path.join(d, name + ".txt") self.assertTrue(os.stat(fname).st_size > 0, fname) def test_flatten_basic(self): obj = [3, ([5, 6], {"name": [7, 9], "name2": 3})] res, schema = flatten_to_tuple(obj) self.assertEqual(res, (3, 5, 6, 7, 9, 3)) new_obj = schema(res) self.assertEqual(new_obj, obj) _, new_schema = flatten_to_tuple(new_obj) self.assertEqual(schema, new_schema) # test __eq__ self._check_schema(schema) def _check_schema(self, schema): dumped_schema = dump_dataclass(schema) # Check that the schema is json-serializable # Although in reality you might want to use yaml because it often has many levels json.dumps(dumped_schema) # Check that the schema can be deserialized new_schema = instantiate(dumped_schema) self.assertEqual(schema, new_schema) def test_flatten_instances_boxes(self): inst = Instances( torch.tensor([5, 8]), pred_masks=torch.tensor([3]), pred_boxes=Boxes(torch.ones((1, 4))) ) obj = [3, ([5, 6], inst)] res, schema = flatten_to_tuple(obj) self.assertEqual(res[:3], (3, 5, 6)) for r, expected in zip(res[3:], (inst.pred_boxes.tensor, inst.pred_masks, inst.image_size)): self.assertIs(r, expected) new_obj = schema(res) assert_instances_allclose(new_obj[1][1], inst, rtol=0.0, size_as_tensor=True) self._check_schema(schema) def test_allow_non_tensor(self): data = (torch.tensor([5, 8]), 3) # contains non-tensor class M(nn.Module): def forward(self, input, number): return input model = M() with self.assertRaisesRegex(ValueError, "must only contain tensors"): adap = TracingAdapter(model, data, allow_non_tensor=False) adap = TracingAdapter(model, data, allow_non_tensor=True) _ = adap(*adap.flattened_inputs) newdata = (data[0].clone(),) with self.assertRaisesRegex(ValueError, "cannot generalize"): _ = adap(*newdata)