# Copyright (c) Facebook, Inc. and its affiliates. import unittest import torch from torch import nn from detectron2.utils.analysis import find_unused_parameters, flop_count_operators, parameter_count from detectron2.utils.testing import get_model_no_weights class RetinaNetTest(unittest.TestCase): def setUp(self): self.model = get_model_no_weights("COCO-Detection/retinanet_R_50_FPN_1x.yaml") def test_flop(self): # RetinaNet supports flop-counting with random inputs inputs = [{"image": torch.rand(3, 800, 800), "test_unused": "abcd"}] res = flop_count_operators(self.model, inputs) self.assertTrue(int(res["conv"]), 146) # 146B flops def test_param_count(self): res = parameter_count(self.model) self.assertTrue(res[""], 37915572) self.assertTrue(res["backbone"], 31452352) class FasterRCNNTest(unittest.TestCase): def setUp(self): self.model = get_model_no_weights("COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml") def test_flop(self): # Faster R-CNN supports flop-counting with random inputs inputs = [{"image": torch.rand(3, 800, 800)}] res = flop_count_operators(self.model, inputs) # This only checks flops for backbone & proposal generator # Flops for box head is not conv, and depends on #proposals, which is # almost 0 for random inputs. self.assertTrue(int(res["conv"]), 117) def test_param_count(self): res = parameter_count(self.model) self.assertTrue(res[""], 41699936) self.assertTrue(res["backbone"], 26799296) class UnusedParamTest(unittest.TestCase): def test_unused(self): class TestMod(nn.Module): def __init__(self): super().__init__() self.fc1 = nn.Linear(10, 10) self.t = nn.Linear(10, 10) def forward(self, x): return self.fc1(x).mean() m = TestMod() ret = find_unused_parameters(m, torch.randn(10, 10)) self.assertEqual(set(ret), {"t.weight", "t.bias"})