# Copyright (c) Facebook, Inc. and its affiliates. import itertools import logging from typing import Dict, List import torch from detectron2.config import configurable from detectron2.layers import ShapeSpec, batched_nms_rotated, cat from detectron2.structures import Instances, RotatedBoxes, pairwise_iou_rotated from detectron2.utils.memory import retry_if_cuda_oom from ..box_regression import Box2BoxTransformRotated from .build import PROPOSAL_GENERATOR_REGISTRY from .proposal_utils import _is_tracing from .rpn import RPN logger = logging.getLogger(__name__) def find_top_rrpn_proposals( proposals, pred_objectness_logits, image_sizes, nms_thresh, pre_nms_topk, post_nms_topk, min_box_size, training, ): """ For each feature map, select the `pre_nms_topk` highest scoring proposals, apply NMS, clip proposals, and remove small boxes. Return the `post_nms_topk` highest scoring proposals among all the feature maps if `training` is True, otherwise, returns the highest `post_nms_topk` scoring proposals for each feature map. Args: proposals (list[Tensor]): A list of L tensors. Tensor i has shape (N, Hi*Wi*A, 5). All proposal predictions on the feature maps. pred_objectness_logits (list[Tensor]): A list of L tensors. Tensor i has shape (N, Hi*Wi*A). image_sizes (list[tuple]): sizes (h, w) for each image nms_thresh (float): IoU threshold to use for NMS pre_nms_topk (int): number of top k scoring proposals to keep before applying NMS. When RRPN is run on multiple feature maps (as in FPN) this number is per feature map. post_nms_topk (int): number of top k scoring proposals to keep after applying NMS. When RRPN is run on multiple feature maps (as in FPN) this number is total, over all feature maps. min_box_size(float): minimum proposal box side length in pixels (absolute units wrt input images). training (bool): True if proposals are to be used in training, otherwise False. This arg exists only to support a legacy bug; look for the "NB: Legacy bug ..." comment. Returns: proposals (list[Instances]): list of N Instances. The i-th Instances stores post_nms_topk object proposals for image i. """ num_images = len(image_sizes) device = proposals[0].device # 1. Select top-k anchor for every level and every image topk_scores = [] # #lvl Tensor, each of shape N x topk topk_proposals = [] level_ids = [] # #lvl Tensor, each of shape (topk,) batch_idx = torch.arange(num_images, device=device) for level_id, proposals_i, logits_i in zip( itertools.count(), proposals, pred_objectness_logits ): Hi_Wi_A = logits_i.shape[1] if isinstance(Hi_Wi_A, torch.Tensor): # it's a tensor in tracing num_proposals_i = torch.clamp(Hi_Wi_A, max=pre_nms_topk) else: num_proposals_i = min(Hi_Wi_A, pre_nms_topk) # sort is faster than topk (https://github.com/pytorch/pytorch/issues/22812) # topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) logits_i, idx = logits_i.sort(descending=True, dim=1) topk_scores_i = logits_i[batch_idx, :num_proposals_i] topk_idx = idx[batch_idx, :num_proposals_i] # each is N x topk topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 5 topk_proposals.append(topk_proposals_i) topk_scores.append(topk_scores_i) level_ids.append(torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device)) # 2. Concat all levels together topk_scores = cat(topk_scores, dim=1) topk_proposals = cat(topk_proposals, dim=1) level_ids = cat(level_ids, dim=0) # 3. For each image, run a per-level NMS, and choose topk results. results = [] for n, image_size in enumerate(image_sizes): boxes = RotatedBoxes(topk_proposals[n]) scores_per_img = topk_scores[n] valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) if not valid_mask.all(): boxes = boxes[valid_mask] scores_per_img = scores_per_img[valid_mask] boxes.clip(image_size) # filter empty boxes keep = boxes.nonempty(threshold=min_box_size) lvl = level_ids if _is_tracing() or keep.sum().item() != len(boxes): boxes, scores_per_img, lvl = (boxes[keep], scores_per_img[keep], level_ids[keep]) keep = batched_nms_rotated(boxes.tensor, scores_per_img, lvl, nms_thresh) # In Detectron1, there was different behavior during training vs. testing. # (https://github.com/facebookresearch/Detectron/issues/459) # During training, topk is over the proposals from *all* images in the training batch. # During testing, it is over the proposals for each image separately. # As a result, the training behavior becomes batch-dependent, # and the configuration "POST_NMS_TOPK_TRAIN" end up relying on the batch size. # This bug is addressed in Detectron2 to make the behavior independent of batch size. keep = keep[:post_nms_topk] res = Instances(image_size) res.proposal_boxes = boxes[keep] res.objectness_logits = scores_per_img[keep] results.append(res) return results @PROPOSAL_GENERATOR_REGISTRY.register() class RRPN(RPN): """ Rotated Region Proposal Network described in :paper:`RRPN`. """ @configurable def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self.anchor_boundary_thresh >= 0: raise NotImplementedError( "anchor_boundary_thresh is a legacy option not implemented for RRPN." ) @classmethod def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]): ret = super().from_config(cfg, input_shape) ret["box2box_transform"] = Box2BoxTransformRotated(weights=cfg.MODEL.RPN.BBOX_REG_WEIGHTS) return ret @torch.no_grad() def label_and_sample_anchors(self, anchors: List[RotatedBoxes], gt_instances: List[Instances]): """ Args: anchors (list[RotatedBoxes]): anchors for each feature map. gt_instances: the ground-truth instances for each image. Returns: list[Tensor]: List of #img tensors. i-th element is a vector of labels whose length is the total number of anchors across feature maps. Label values are in {-1, 0, 1}, with meanings: -1 = ignore; 0 = negative class; 1 = positive class. list[Tensor]: i-th element is a Nx5 tensor, where N is the total number of anchors across feature maps. The values are the matched gt boxes for each anchor. Values are undefined for those anchors not labeled as 1. """ anchors = RotatedBoxes.cat(anchors) gt_boxes = [x.gt_boxes for x in gt_instances] del gt_instances gt_labels = [] matched_gt_boxes = [] for gt_boxes_i in gt_boxes: """ gt_boxes_i: ground-truth boxes for i-th image """ match_quality_matrix = retry_if_cuda_oom(pairwise_iou_rotated)(gt_boxes_i, anchors) matched_idxs, gt_labels_i = retry_if_cuda_oom(self.anchor_matcher)(match_quality_matrix) # Matching is memory-expensive and may result in CPU tensors. But the result is small gt_labels_i = gt_labels_i.to(device=gt_boxes_i.device) # A vector of labels (-1, 0, 1) for each anchor gt_labels_i = self._subsample_labels(gt_labels_i) if len(gt_boxes_i) == 0: # These values won't be used anyway since the anchor is labeled as background matched_gt_boxes_i = torch.zeros_like(anchors.tensor) else: # TODO wasted indexing computation for ignored boxes matched_gt_boxes_i = gt_boxes_i[matched_idxs].tensor gt_labels.append(gt_labels_i) # N,AHW matched_gt_boxes.append(matched_gt_boxes_i) return gt_labels, matched_gt_boxes @torch.no_grad() def predict_proposals(self, anchors, pred_objectness_logits, pred_anchor_deltas, image_sizes): pred_proposals = self._decode_proposals(anchors, pred_anchor_deltas) return find_top_rrpn_proposals( pred_proposals, pred_objectness_logits, image_sizes, self.nms_thresh, self.pre_nms_topk[self.training], self.post_nms_topk[self.training], self.min_box_size, self.training, )