# Copyright (c) Facebook, Inc. and its affiliates. import json import math import os import tempfile import time import unittest from unittest import mock import torch from fvcore.common.checkpoint import Checkpointer from torch import nn from detectron2 import model_zoo from detectron2.config import configurable, get_cfg from detectron2.engine import DefaultTrainer, SimpleTrainer, default_setup, hooks from detectron2.modeling.meta_arch import META_ARCH_REGISTRY from detectron2.utils.events import CommonMetricPrinter, JSONWriter @META_ARCH_REGISTRY.register() class _SimpleModel(nn.Module): @configurable def __init__(self, sleep_sec=0): super().__init__() self.mod = nn.Linear(10, 20) self.sleep_sec = sleep_sec @classmethod def from_config(cls, cfg): return {} def forward(self, x): if self.sleep_sec > 0: time.sleep(self.sleep_sec) return {"loss": x.sum() + sum([x.mean() for x in self.parameters()])} class TestTrainer(unittest.TestCase): def _data_loader(self, device): device = torch.device(device) while True: yield torch.rand(3, 3).to(device) def test_simple_trainer(self, device="cpu"): model = _SimpleModel().to(device=device) trainer = SimpleTrainer( model, self._data_loader(device), torch.optim.SGD(model.parameters(), 0.1) ) trainer.train(0, 10) @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def test_simple_trainer_cuda(self): self.test_simple_trainer(device="cuda") def test_writer_hooks(self): model = _SimpleModel(sleep_sec=0.1) trainer = SimpleTrainer( model, self._data_loader("cpu"), torch.optim.SGD(model.parameters(), 0.1) ) max_iter = 50 with tempfile.TemporaryDirectory(prefix="detectron2_test") as d: json_file = os.path.join(d, "metrics.json") writers = [CommonMetricPrinter(max_iter), JSONWriter(json_file)] trainer.register_hooks( [hooks.EvalHook(0, lambda: {"metric": 100}), hooks.PeriodicWriter(writers)] ) with self.assertLogs(writers[0].logger) as logs: trainer.train(0, max_iter) with open(json_file, "r") as f: data = [json.loads(line.strip()) for line in f] self.assertEqual([x["iteration"] for x in data], [19, 39, 49, 50]) # the eval metric is in the last line with iter 50 self.assertIn("metric", data[-1], "Eval metric must be in last line of JSON!") # test logged messages from CommonMetricPrinter self.assertEqual(len(logs.output), 3) for log, iter in zip(logs.output, [19, 39, 49]): self.assertIn(f"iter: {iter}", log) self.assertIn("eta: 0:00:00", logs.output[-1], "Last ETA must be 0!") @unittest.skipIf(os.environ.get("CI"), "Require COCO data.") def test_default_trainer(self): # TODO: this test requires manifold access, so changed device to CPU. see: T88318502 cfg = get_cfg() cfg.MODEL.DEVICE = "cpu" cfg.MODEL.META_ARCHITECTURE = "_SimpleModel" cfg.DATASETS.TRAIN = ("coco_2017_val_100",) with tempfile.TemporaryDirectory(prefix="detectron2_test") as d: cfg.OUTPUT_DIR = d trainer = DefaultTrainer(cfg) # test property self.assertIs(trainer.model, trainer._trainer.model) trainer.model = _SimpleModel() self.assertIs(trainer.model, trainer._trainer.model) def test_checkpoint_resume(self): model = _SimpleModel() dataloader = self._data_loader("cpu") opt = torch.optim.SGD(model.parameters(), 0.1) scheduler = torch.optim.lr_scheduler.StepLR(opt, 3) with tempfile.TemporaryDirectory(prefix="detectron2_test") as d: trainer = SimpleTrainer(model, dataloader, opt) checkpointer = Checkpointer(model, d, opt=opt, trainer=trainer) trainer.register_hooks( [ hooks.LRScheduler(scheduler=scheduler), # checkpoint after scheduler to properly save the state of scheduler hooks.PeriodicCheckpointer(checkpointer, 10), ] ) trainer.train(0, 12) self.assertAlmostEqual(opt.param_groups[0]["lr"], 1e-5) self.assertEqual(scheduler.last_epoch, 12) del trainer opt = torch.optim.SGD(model.parameters(), 999) # lr will be loaded trainer = SimpleTrainer(model, dataloader, opt) scheduler = torch.optim.lr_scheduler.StepLR(opt, 3) trainer.register_hooks( [ hooks.LRScheduler(scheduler=scheduler), ] ) checkpointer = Checkpointer(model, d, opt=opt, trainer=trainer) checkpointer.resume_or_load("non_exist.pth") self.assertEqual(trainer.iter, 11) # last finished iter number (0-based in Trainer) # number of times `scheduler.step()` was called (1-based) self.assertEqual(scheduler.last_epoch, 12) self.assertAlmostEqual(opt.param_groups[0]["lr"], 1e-5) def test_eval_hook(self): model = _SimpleModel() dataloader = self._data_loader("cpu") opt = torch.optim.SGD(model.parameters(), 0.1) for total_iter, period, eval_count in [(30, 15, 2), (31, 15, 3), (20, 0, 1)]: test_func = mock.Mock(return_value={"metric": 3.0}) trainer = SimpleTrainer(model, dataloader, opt) trainer.register_hooks([hooks.EvalHook(period, test_func)]) trainer.train(0, total_iter) self.assertEqual(test_func.call_count, eval_count) def test_best_checkpointer(self): model = _SimpleModel() dataloader = self._data_loader("cpu") opt = torch.optim.SGD(model.parameters(), 0.1) metric_name = "metric" total_iter = 40 test_period = 10 test_cases = [ ("max", iter([0.3, 0.4, 0.35, 0.5]), 3), ("min", iter([1.0, 0.8, 0.9, 0.9]), 2), ("min", iter([math.nan, 0.8, 0.9, 0.9]), 1), ] for mode, metrics, call_count in test_cases: trainer = SimpleTrainer(model, dataloader, opt) with tempfile.TemporaryDirectory(prefix="detectron2_test") as d: checkpointer = Checkpointer(model, d, opt=opt, trainer=trainer) trainer.register_hooks( [ hooks.EvalHook(test_period, lambda: {metric_name: next(metrics)}), hooks.BestCheckpointer(test_period, checkpointer, metric_name, mode=mode), ] ) with mock.patch.object(checkpointer, "save") as mock_save_method: trainer.train(0, total_iter) self.assertEqual(mock_save_method.call_count, call_count) def test_setup_config(self): with tempfile.TemporaryDirectory(prefix="detectron2_test") as d: cfg = get_cfg() cfg.OUTPUT_DIR = os.path.join(d, "yacs") default_setup(cfg, {}) cfg = model_zoo.get_config("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.py") cfg.train.output_dir = os.path.join(d, "omegaconf") default_setup(cfg, {})