# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. import logging import numpy as np import unittest from unittest import mock import torch from PIL import Image, ImageOps from torch.nn import functional as F from detectron2.config import get_cfg from detectron2.data import detection_utils from detectron2.data import transforms as T from detectron2.utils.logger import setup_logger logger = logging.getLogger(__name__) class TestTransforms(unittest.TestCase): def setUp(self): setup_logger() def test_apply_rotated_boxes(self): np.random.seed(125) cfg = get_cfg() is_train = True augs = detection_utils.build_augmentation(cfg, is_train) image = np.random.rand(200, 300) image, transforms = T.apply_augmentations(augs, image) image_shape = image.shape[:2] # h, w assert image_shape == (800, 1200) annotation = {"bbox": [179, 97, 62, 40, -56]} boxes = np.array([annotation["bbox"]], dtype=np.float64) # boxes.shape = (1, 5) transformed_bbox = transforms.apply_rotated_box(boxes)[0] expected_bbox = np.array([484, 388, 248, 160, 56], dtype=np.float64) err_msg = "transformed_bbox = {}, expected {}".format(transformed_bbox, expected_bbox) assert np.allclose(transformed_bbox, expected_bbox), err_msg def test_resize_and_crop(self): np.random.seed(125) min_scale = 0.2 max_scale = 2.0 target_height = 1100 target_width = 1000 resize_aug = T.ResizeScale(min_scale, max_scale, target_height, target_width) fixed_size_crop_aug = T.FixedSizeCrop((target_height, target_width)) hflip_aug = T.RandomFlip() augs = [resize_aug, fixed_size_crop_aug, hflip_aug] original_image = np.random.rand(900, 800) image, transforms = T.apply_augmentations(augs, original_image) image_shape = image.shape[:2] # h, w self.assertEqual((1100, 1000), image_shape) boxes = np.array( [[91, 46, 144, 111], [523, 251, 614, 295]], dtype=np.float64, ) transformed_bboxs = transforms.apply_box(boxes) expected_bboxs = np.array( [ [895.42, 33.42666667, 933.91125, 80.66], [554.0825, 182.39333333, 620.17125, 214.36666667], ], dtype=np.float64, ) err_msg = "transformed_bbox = {}, expected {}".format(transformed_bboxs, expected_bboxs) self.assertTrue(np.allclose(transformed_bboxs, expected_bboxs), err_msg) polygon = np.array([[91, 46], [144, 46], [144, 111], [91, 111]]) transformed_polygons = transforms.apply_polygons([polygon]) expected_polygon = np.array([[934.0, 33.0], [934.0, 80.0], [896.0, 80.0], [896.0, 33.0]]) self.assertEqual(1, len(transformed_polygons)) err_msg = "transformed_polygon = {}, expected {}".format( transformed_polygons[0], expected_polygon ) self.assertTrue(np.allclose(transformed_polygons[0], expected_polygon), err_msg) def test_apply_rotated_boxes_unequal_scaling_factor(self): np.random.seed(125) h, w = 400, 200 newh, neww = 800, 800 image = np.random.rand(h, w) augs = [] augs.append(T.Resize(shape=(newh, neww))) image, transforms = T.apply_augmentations(augs, image) image_shape = image.shape[:2] # h, w assert image_shape == (newh, neww) boxes = np.array( [ [150, 100, 40, 20, 0], [150, 100, 40, 20, 30], [150, 100, 40, 20, 90], [150, 100, 40, 20, -90], ], dtype=np.float64, ) transformed_boxes = transforms.apply_rotated_box(boxes) expected_bboxes = np.array( [ [600, 200, 160, 40, 0], [600, 200, 144.22205102, 52.91502622, 49.10660535], [600, 200, 80, 80, 90], [600, 200, 80, 80, -90], ], dtype=np.float64, ) err_msg = "transformed_boxes = {}, expected {}".format(transformed_boxes, expected_bboxes) assert np.allclose(transformed_boxes, expected_bboxes), err_msg def test_print_augmentation(self): t = T.RandomCrop("relative", (100, 100)) self.assertEqual(str(t), "RandomCrop(crop_type='relative', crop_size=(100, 100))") t0 = T.RandomFlip(prob=0.5) self.assertEqual(str(t0), "RandomFlip(prob=0.5)") t1 = T.RandomFlip() self.assertEqual(str(t1), "RandomFlip()") t = T.AugmentationList([t0, t1]) self.assertEqual(str(t), f"AugmentationList[{t0}, {t1}]") def test_random_apply_prob_out_of_range_check(self): test_probabilities = {0.0: True, 0.5: True, 1.0: True, -0.01: False, 1.01: False} for given_probability, is_valid in test_probabilities.items(): if not is_valid: self.assertRaises(AssertionError, T.RandomApply, None, prob=given_probability) else: T.RandomApply(T.NoOpTransform(), prob=given_probability) def test_random_apply_wrapping_aug_probability_occured_evaluation(self): transform_mock = mock.MagicMock(name="MockTransform", spec=T.Augmentation) image_mock = mock.MagicMock(name="MockImage") random_apply = T.RandomApply(transform_mock, prob=0.001) with mock.patch.object(random_apply, "_rand_range", return_value=0.0001): transform = random_apply.get_transform(image_mock) transform_mock.get_transform.assert_called_once_with(image_mock) self.assertIsNot(transform, transform_mock) def test_random_apply_wrapping_std_transform_probability_occured_evaluation(self): transform_mock = mock.MagicMock(name="MockTransform", spec=T.Transform) image_mock = mock.MagicMock(name="MockImage") random_apply = T.RandomApply(transform_mock, prob=0.001) with mock.patch.object(random_apply, "_rand_range", return_value=0.0001): transform = random_apply.get_transform(image_mock) self.assertIs(transform, transform_mock) def test_random_apply_probability_not_occured_evaluation(self): transform_mock = mock.MagicMock(name="MockTransform", spec=T.Augmentation) image_mock = mock.MagicMock(name="MockImage") random_apply = T.RandomApply(transform_mock, prob=0.001) with mock.patch.object(random_apply, "_rand_range", return_value=0.9): transform = random_apply.get_transform(image_mock) transform_mock.get_transform.assert_not_called() self.assertIsInstance(transform, T.NoOpTransform) def test_augmentation_input_args(self): input_shape = (100, 100) output_shape = (50, 50) # define two augmentations with different args class TG1(T.Augmentation): def get_transform(self, image, sem_seg): return T.ResizeTransform( input_shape[0], input_shape[1], output_shape[0], output_shape[1] ) class TG2(T.Augmentation): def get_transform(self, image): assert image.shape[:2] == output_shape # check that TG1 is applied return T.HFlipTransform(output_shape[1]) image = np.random.rand(*input_shape).astype("float32") sem_seg = (np.random.rand(*input_shape) < 0.5).astype("uint8") inputs = T.AugInput(image, sem_seg=sem_seg) # provide two args tfms = inputs.apply_augmentations([TG1(), TG2()]) self.assertIsInstance(tfms[0], T.ResizeTransform) self.assertIsInstance(tfms[1], T.HFlipTransform) self.assertTrue(inputs.image.shape[:2] == output_shape) self.assertTrue(inputs.sem_seg.shape[:2] == output_shape) class TG3(T.Augmentation): def get_transform(self, image, nonexist): pass with self.assertRaises(AttributeError): inputs.apply_augmentations([TG3()]) def test_augmentation_list(self): input_shape = (100, 100) image = np.random.rand(*input_shape).astype("float32") sem_seg = (np.random.rand(*input_shape) < 0.5).astype("uint8") inputs = T.AugInput(image, sem_seg=sem_seg) # provide two args augs = T.AugmentationList([T.RandomFlip(), T.Resize(20)]) _ = T.AugmentationList([augs, T.Resize(30)])(inputs) # 3 in latest fvcore (flattened transformlist), 2 in older # self.assertEqual(len(tfms), 3) def test_color_transforms(self): rand_img = np.random.random((100, 100, 3)) * 255 rand_img = rand_img.astype("uint8") # Test no-op noop_transform = T.ColorTransform(lambda img: img) self.assertTrue(np.array_equal(rand_img, noop_transform.apply_image(rand_img))) # Test a ImageOps operation magnitude = np.random.randint(0, 256) solarize_transform = T.PILColorTransform(lambda img: ImageOps.solarize(img, magnitude)) expected_img = ImageOps.solarize(Image.fromarray(rand_img), magnitude) self.assertTrue(np.array_equal(expected_img, solarize_transform.apply_image(rand_img))) def test_resize_transform(self): input_shapes = [(100, 100), (100, 100, 1), (100, 100, 3)] output_shapes = [(200, 200), (200, 200, 1), (200, 200, 3)] for in_shape, out_shape in zip(input_shapes, output_shapes): in_img = np.random.randint(0, 255, size=in_shape, dtype=np.uint8) tfm = T.ResizeTransform(in_shape[0], in_shape[1], out_shape[0], out_shape[1]) out_img = tfm.apply_image(in_img) self.assertEqual(out_img.shape, out_shape) def test_resize_shorted_edge_scriptable(self): def f(image): newh, neww = T.ResizeShortestEdge.get_output_shape( image.shape[-2], image.shape[-1], 80, 133 ) return F.interpolate(image.unsqueeze(0), size=(newh, neww)) input = torch.randn(3, 10, 10) script_f = torch.jit.script(f) self.assertTrue(torch.allclose(f(input), script_f(input))) # generalize to new shapes input = torch.randn(3, 8, 100) self.assertTrue(torch.allclose(f(input), script_f(input))) def test_extent_transform(self): input_shapes = [(100, 100), (100, 100, 1), (100, 100, 3)] src_rect = (20, 20, 80, 80) output_shapes = [(200, 200), (200, 200, 1), (200, 200, 3)] for in_shape, out_shape in zip(input_shapes, output_shapes): in_img = np.random.randint(0, 255, size=in_shape, dtype=np.uint8) tfm = T.ExtentTransform(src_rect, out_shape[:2]) out_img = tfm.apply_image(in_img) self.assertTrue(out_img.shape == out_shape)