# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. """ This file registers pre-defined datasets at hard-coded paths, and their metadata. We hard-code metadata for common datasets. This will enable: 1. Consistency check when loading the datasets 2. Use models on these standard datasets directly and run demos, without having to download the dataset annotations We hard-code some paths to the dataset that's assumed to exist in "./datasets/". Users SHOULD NOT use this file to create new dataset / metadata for new dataset. To add new dataset, refer to the tutorial "docs/DATASETS.md". """ import os from detectron2.data import DatasetCatalog, MetadataCatalog from .builtin_meta import ADE20K_SEM_SEG_CATEGORIES, _get_builtin_metadata from .cityscapes import load_cityscapes_instances, load_cityscapes_semantic from .cityscapes_panoptic import register_all_cityscapes_panoptic from .coco import load_sem_seg, register_coco_instances from .coco_panoptic import register_coco_panoptic, register_coco_panoptic_separated from .lvis import get_lvis_instances_meta, register_lvis_instances from .pascal_voc import register_pascal_voc # ==== Predefined datasets and splits for COCO ========== _PREDEFINED_SPLITS_COCO = {} _PREDEFINED_SPLITS_COCO["coco"] = { "coco_2014_train": ("coco/train2014", "coco/annotations/instances_train2014.json"), "coco_2014_val": ("coco/val2014", "coco/annotations/instances_val2014.json"), "coco_2014_minival": ("coco/val2014", "coco/annotations/instances_minival2014.json"), "coco_2014_minival_100": ("coco/val2014", "coco/annotations/instances_minival2014_100.json"), "coco_2014_valminusminival": ( "coco/val2014", "coco/annotations/instances_valminusminival2014.json", ), "coco_2017_train": ("coco/train2017", "coco/annotations/instances_train2017.json"), "coco_2017_val": ("coco/val2017", "coco/annotations/instances_val2017.json"), "coco_2017_test": ("coco/test2017", "coco/annotations/image_info_test2017.json"), "coco_2017_test-dev": ("coco/test2017", "coco/annotations/image_info_test-dev2017.json"), "coco_2017_val_100": ("coco/val2017", "coco/annotations/instances_val2017_100.json"), } _PREDEFINED_SPLITS_COCO["coco_person"] = { "keypoints_coco_2014_train": ( "coco/train2014", "coco/annotations/person_keypoints_train2014.json", ), "keypoints_coco_2014_val": ("coco/val2014", "coco/annotations/person_keypoints_val2014.json"), "keypoints_coco_2014_minival": ( "coco/val2014", "coco/annotations/person_keypoints_minival2014.json", ), "keypoints_coco_2014_valminusminival": ( "coco/val2014", "coco/annotations/person_keypoints_valminusminival2014.json", ), "keypoints_coco_2014_minival_100": ( "coco/val2014", "coco/annotations/person_keypoints_minival2014_100.json", ), "keypoints_coco_2017_train": ( "coco/train2017", "coco/annotations/person_keypoints_train2017.json", ), "keypoints_coco_2017_val": ("coco/val2017", "coco/annotations/person_keypoints_val2017.json"), "keypoints_coco_2017_val_100": ( "coco/val2017", "coco/annotations/person_keypoints_val2017_100.json", ), } _PREDEFINED_SPLITS_COCO_PANOPTIC = { "coco_2017_train_panoptic": ( # This is the original panoptic annotation directory "coco/panoptic_train2017", "coco/annotations/panoptic_train2017.json", # This directory contains semantic annotations that are # converted from panoptic annotations. # It is used by PanopticFPN. # You can use the script at detectron2/datasets/prepare_panoptic_fpn.py # to create these directories. "coco/panoptic_stuff_train2017", ), "coco_2017_val_panoptic": ( "coco/panoptic_val2017", "coco/annotations/panoptic_val2017.json", "coco/panoptic_stuff_val2017", ), "coco_2017_val_100_panoptic": ( "coco/panoptic_val2017_100", "coco/annotations/panoptic_val2017_100.json", "coco/panoptic_stuff_val2017_100", ), } def register_all_coco(root): for dataset_name, splits_per_dataset in _PREDEFINED_SPLITS_COCO.items(): for key, (image_root, json_file) in splits_per_dataset.items(): # Assume pre-defined datasets live in `./datasets`. register_coco_instances( key, _get_builtin_metadata(dataset_name), os.path.join(root, json_file) if "://" not in json_file else json_file, os.path.join(root, image_root), ) for ( prefix, (panoptic_root, panoptic_json, semantic_root), ) in _PREDEFINED_SPLITS_COCO_PANOPTIC.items(): prefix_instances = prefix[: -len("_panoptic")] instances_meta = MetadataCatalog.get(prefix_instances) image_root, instances_json = instances_meta.image_root, instances_meta.json_file # The "separated" version of COCO panoptic segmentation dataset, # e.g. used by Panoptic FPN register_coco_panoptic_separated( prefix, _get_builtin_metadata("coco_panoptic_separated"), image_root, os.path.join(root, panoptic_root), os.path.join(root, panoptic_json), os.path.join(root, semantic_root), instances_json, ) # The "standard" version of COCO panoptic segmentation dataset, # e.g. used by Panoptic-DeepLab register_coco_panoptic( prefix, _get_builtin_metadata("coco_panoptic_standard"), image_root, os.path.join(root, panoptic_root), os.path.join(root, panoptic_json), instances_json, ) # ==== Predefined datasets and splits for LVIS ========== _PREDEFINED_SPLITS_LVIS = { "lvis_v1": { "lvis_v1_train": ("coco/", "lvis/lvis_v1_train.json"), "lvis_v1_val": ("coco/", "lvis/lvis_v1_val.json"), "lvis_v1_test_dev": ("coco/", "lvis/lvis_v1_image_info_test_dev.json"), "lvis_v1_test_challenge": ("coco/", "lvis/lvis_v1_image_info_test_challenge.json"), }, "lvis_v0.5": { "lvis_v0.5_train": ("coco/", "lvis/lvis_v0.5_train.json"), "lvis_v0.5_val": ("coco/", "lvis/lvis_v0.5_val.json"), "lvis_v0.5_val_rand_100": ("coco/", "lvis/lvis_v0.5_val_rand_100.json"), "lvis_v0.5_test": ("coco/", "lvis/lvis_v0.5_image_info_test.json"), }, "lvis_v0.5_cocofied": { "lvis_v0.5_train_cocofied": ("coco/", "lvis/lvis_v0.5_train_cocofied.json"), "lvis_v0.5_val_cocofied": ("coco/", "lvis/lvis_v0.5_val_cocofied.json"), }, } def register_all_lvis(root): for dataset_name, splits_per_dataset in _PREDEFINED_SPLITS_LVIS.items(): for key, (image_root, json_file) in splits_per_dataset.items(): register_lvis_instances( key, get_lvis_instances_meta(dataset_name), os.path.join(root, json_file) if "://" not in json_file else json_file, os.path.join(root, image_root), ) # ==== Predefined splits for raw cityscapes images =========== _RAW_CITYSCAPES_SPLITS = { "cityscapes_fine_{task}_train": ("cityscapes/leftImg8bit/train/", "cityscapes/gtFine/train/"), "cityscapes_fine_{task}_val": ("cityscapes/leftImg8bit/val/", "cityscapes/gtFine/val/"), "cityscapes_fine_{task}_test": ("cityscapes/leftImg8bit/test/", "cityscapes/gtFine/test/"), } def register_all_cityscapes(root): for key, (image_dir, gt_dir) in _RAW_CITYSCAPES_SPLITS.items(): meta = _get_builtin_metadata("cityscapes") image_dir = os.path.join(root, image_dir) gt_dir = os.path.join(root, gt_dir) inst_key = key.format(task="instance_seg") DatasetCatalog.register( inst_key, lambda x=image_dir, y=gt_dir: load_cityscapes_instances( x, y, from_json=True, to_polygons=True ), ) MetadataCatalog.get(inst_key).set( image_dir=image_dir, gt_dir=gt_dir, evaluator_type="cityscapes_instance", **meta ) sem_key = key.format(task="sem_seg") DatasetCatalog.register( sem_key, lambda x=image_dir, y=gt_dir: load_cityscapes_semantic(x, y) ) MetadataCatalog.get(sem_key).set( image_dir=image_dir, gt_dir=gt_dir, evaluator_type="cityscapes_sem_seg", ignore_label=255, **meta, ) # ==== Predefined splits for PASCAL VOC =========== def register_all_pascal_voc(root): SPLITS = [ ("voc_2007_trainval", "VOC2007", "trainval"), ("voc_2007_train", "VOC2007", "train"), ("voc_2007_val", "VOC2007", "val"), ("voc_2007_test", "VOC2007", "test"), ("voc_2012_trainval", "VOC2012", "trainval"), ("voc_2012_train", "VOC2012", "train"), ("voc_2012_val", "VOC2012", "val"), ] for name, dirname, split in SPLITS: year = 2007 if "2007" in name else 2012 register_pascal_voc(name, os.path.join(root, dirname), split, year) MetadataCatalog.get(name).evaluator_type = "pascal_voc" def register_all_ade20k(root): root = os.path.join(root, "ADEChallengeData2016") for name, dirname in [("train", "training"), ("val", "validation")]: image_dir = os.path.join(root, "images", dirname) gt_dir = os.path.join(root, "annotations_detectron2", dirname) name = f"ade20k_sem_seg_{name}" DatasetCatalog.register( name, lambda x=image_dir, y=gt_dir: load_sem_seg(y, x, gt_ext="png", image_ext="jpg") ) MetadataCatalog.get(name).set( stuff_classes=ADE20K_SEM_SEG_CATEGORIES[:], image_root=image_dir, sem_seg_root=gt_dir, evaluator_type="sem_seg", ignore_label=255, ) # True for open source; # Internally at fb, we register them elsewhere if __name__.endswith(".builtin"): # Assume pre-defined datasets live in `./datasets`. _root = os.getenv("DETECTRON2_DATASETS", "datasets") register_all_coco(_root) register_all_lvis(_root) register_all_cityscapes(_root) register_all_cityscapes_panoptic(_root) register_all_pascal_voc(_root) register_all_ade20k(_root)