# Copyright (c) Facebook, Inc. and its affiliates. import math import torch import torch.nn.functional as F from detectron2.layers import cat from detectron2.layers.roi_align_rotated import ROIAlignRotated from detectron2.modeling import poolers from detectron2.modeling.proposal_generator import rpn from detectron2.modeling.roi_heads.mask_head import mask_rcnn_inference from detectron2.structures import Boxes, ImageList, Instances, Keypoints from .shared import alias, to_device """ This file contains caffe2-compatible implementation of several detectron2 components. """ class Caffe2Boxes(Boxes): """ Representing a list of detectron2.structures.Boxes from minibatch, each box is represented by a 5d vector (batch index + 4 coordinates), or a 6d vector (batch index + 5 coordinates) for RotatedBoxes. """ def __init__(self, tensor): assert isinstance(tensor, torch.Tensor) assert tensor.dim() == 2 and tensor.size(-1) in [4, 5, 6], tensor.size() # TODO: make tensor immutable when dim is Nx5 for Boxes, # and Nx6 for RotatedBoxes? self.tensor = tensor # TODO clean up this class, maybe just extend Instances class InstancesList(object): """ Tensor representation of a list of Instances object for a batch of images. When dealing with a batch of images with Caffe2 ops, a list of bboxes (instances) are usually represented by single Tensor with size (sigma(Ni), 5) or (sigma(Ni), 4) plus a batch split Tensor. This class is for providing common functions to convert between these two representations. """ def __init__(self, im_info, indices, extra_fields=None): # [N, 3] -> (H, W, Scale) self.im_info = im_info # [N,] -> indice of batch to which the instance belongs self.indices = indices # [N, ...] self.batch_extra_fields = extra_fields or {} self.image_size = self.im_info def get_fields(self): """like `get_fields` in the Instances object, but return each field in tensor representations""" ret = {} for k, v in self.batch_extra_fields.items(): # if isinstance(v, torch.Tensor): # tensor_rep = v # elif isinstance(v, (Boxes, Keypoints)): # tensor_rep = v.tensor # else: # raise ValueError("Can't find tensor representation for: {}".format()) ret[k] = v return ret def has(self, name): return name in self.batch_extra_fields def set(self, name, value): data_len = len(value) if len(self.batch_extra_fields): assert ( len(self) == data_len ), "Adding a field of length {} to a Instances of length {}".format(data_len, len(self)) self.batch_extra_fields[name] = value def __setattr__(self, name, val): if name in ["im_info", "indices", "batch_extra_fields", "image_size"]: super().__setattr__(name, val) else: self.set(name, val) def __getattr__(self, name): if name not in self.batch_extra_fields: raise AttributeError("Cannot find field '{}' in the given Instances!".format(name)) return self.batch_extra_fields[name] def __len__(self): return len(self.indices) def flatten(self): ret = [] for _, v in self.batch_extra_fields.items(): if isinstance(v, (Boxes, Keypoints)): ret.append(v.tensor) else: ret.append(v) return ret @staticmethod def to_d2_instances_list(instances_list): """ Convert InstancesList to List[Instances]. The input `instances_list` can also be a List[Instances], in this case this method is a non-op. """ if not isinstance(instances_list, InstancesList): assert all(isinstance(x, Instances) for x in instances_list) return instances_list ret = [] for i, info in enumerate(instances_list.im_info): instances = Instances(torch.Size([int(info[0].item()), int(info[1].item())])) ids = instances_list.indices == i for k, v in instances_list.batch_extra_fields.items(): if isinstance(v, torch.Tensor): instances.set(k, v[ids]) continue elif isinstance(v, Boxes): instances.set(k, v[ids, -4:]) continue target_type, tensor_source = v assert isinstance(tensor_source, torch.Tensor) assert tensor_source.shape[0] == instances_list.indices.shape[0] tensor_source = tensor_source[ids] if issubclass(target_type, Boxes): instances.set(k, Boxes(tensor_source[:, -4:])) elif issubclass(target_type, Keypoints): instances.set(k, Keypoints(tensor_source)) elif issubclass(target_type, torch.Tensor): instances.set(k, tensor_source) else: raise ValueError("Can't handle targe type: {}".format(target_type)) ret.append(instances) return ret class Caffe2Compatible(object): """ A model can inherit this class to indicate that it can be traced and deployed with caffe2. """ def _get_tensor_mode(self): return self._tensor_mode def _set_tensor_mode(self, v): self._tensor_mode = v tensor_mode = property(_get_tensor_mode, _set_tensor_mode) """ If true, the model expects C2-style tensor only inputs/outputs format. """ class Caffe2RPN(Caffe2Compatible, rpn.RPN): def _generate_proposals( self, images, objectness_logits_pred, anchor_deltas_pred, gt_instances=None ): assert isinstance(images, ImageList) if self.tensor_mode: im_info = images.image_sizes else: im_info = torch.tensor([[im_sz[0], im_sz[1], 1.0] for im_sz in images.image_sizes]).to( images.tensor.device ) assert isinstance(im_info, torch.Tensor) rpn_rois_list = [] rpn_roi_probs_list = [] for scores, bbox_deltas, cell_anchors_tensor, feat_stride in zip( objectness_logits_pred, anchor_deltas_pred, iter(self.anchor_generator.cell_anchors), self.anchor_generator.strides, ): scores = scores.detach() bbox_deltas = bbox_deltas.detach() rpn_rois, rpn_roi_probs = torch.ops._caffe2.GenerateProposals( scores, bbox_deltas, im_info, cell_anchors_tensor, spatial_scale=1.0 / feat_stride, pre_nms_topN=self.pre_nms_topk[self.training], post_nms_topN=self.post_nms_topk[self.training], nms_thresh=self.nms_thresh, min_size=self.min_box_size, # correct_transform_coords=True, # deprecated argument angle_bound_on=True, # Default angle_bound_lo=-180, angle_bound_hi=180, clip_angle_thresh=1.0, # Default legacy_plus_one=False, ) rpn_rois_list.append(rpn_rois) rpn_roi_probs_list.append(rpn_roi_probs) # For FPN in D2, in RPN all proposals from different levels are concated # together, ranked and picked by top post_nms_topk. Then in ROIPooler # it calculates level_assignments and calls the RoIAlign from # the corresponding level. if len(objectness_logits_pred) == 1: rpn_rois = rpn_rois_list[0] rpn_roi_probs = rpn_roi_probs_list[0] else: assert len(rpn_rois_list) == len(rpn_roi_probs_list) rpn_post_nms_topN = self.post_nms_topk[self.training] device = rpn_rois_list[0].device input_list = [to_device(x, "cpu") for x in (rpn_rois_list + rpn_roi_probs_list)] # TODO remove this after confirming rpn_max_level/rpn_min_level # is not needed in CollectRpnProposals. feature_strides = list(self.anchor_generator.strides) rpn_min_level = int(math.log2(feature_strides[0])) rpn_max_level = int(math.log2(feature_strides[-1])) assert (rpn_max_level - rpn_min_level + 1) == len( rpn_rois_list ), "CollectRpnProposals requires continuous levels" rpn_rois = torch.ops._caffe2.CollectRpnProposals( input_list, # NOTE: in current implementation, rpn_max_level and rpn_min_level # are not needed, only the subtraction of two matters and it # can be infer from the number of inputs. Keep them now for # consistency. rpn_max_level=2 + len(rpn_rois_list) - 1, rpn_min_level=2, rpn_post_nms_topN=rpn_post_nms_topN, ) rpn_rois = to_device(rpn_rois, device) rpn_roi_probs = [] proposals = self.c2_postprocess(im_info, rpn_rois, rpn_roi_probs, self.tensor_mode) return proposals, {} def forward(self, images, features, gt_instances=None): assert not self.training features = [features[f] for f in self.in_features] objectness_logits_pred, anchor_deltas_pred = self.rpn_head(features) return self._generate_proposals( images, objectness_logits_pred, anchor_deltas_pred, gt_instances, ) @staticmethod def c2_postprocess(im_info, rpn_rois, rpn_roi_probs, tensor_mode): proposals = InstancesList( im_info=im_info, indices=rpn_rois[:, 0], extra_fields={ "proposal_boxes": Caffe2Boxes(rpn_rois), "objectness_logits": (torch.Tensor, rpn_roi_probs), }, ) if not tensor_mode: proposals = InstancesList.to_d2_instances_list(proposals) else: proposals = [proposals] return proposals class Caffe2ROIPooler(Caffe2Compatible, poolers.ROIPooler): @staticmethod def c2_preprocess(box_lists): assert all(isinstance(x, Boxes) for x in box_lists) if all(isinstance(x, Caffe2Boxes) for x in box_lists): # input is pure-tensor based assert len(box_lists) == 1 pooler_fmt_boxes = box_lists[0].tensor else: pooler_fmt_boxes = poolers.convert_boxes_to_pooler_format(box_lists) return pooler_fmt_boxes def forward(self, x, box_lists): assert not self.training pooler_fmt_boxes = self.c2_preprocess(box_lists) num_level_assignments = len(self.level_poolers) if num_level_assignments == 1: if isinstance(self.level_poolers[0], ROIAlignRotated): c2_roi_align = torch.ops._caffe2.RoIAlignRotated aligned = True else: c2_roi_align = torch.ops._caffe2.RoIAlign aligned = self.level_poolers[0].aligned x0 = x[0] if x0.is_quantized: x0 = x0.dequantize() out = c2_roi_align( x0, pooler_fmt_boxes, order="NCHW", spatial_scale=float(self.level_poolers[0].spatial_scale), pooled_h=int(self.output_size[0]), pooled_w=int(self.output_size[1]), sampling_ratio=int(self.level_poolers[0].sampling_ratio), aligned=aligned, ) return out device = pooler_fmt_boxes.device assert ( self.max_level - self.min_level + 1 == 4 ), "Currently DistributeFpnProposals only support 4 levels" fpn_outputs = torch.ops._caffe2.DistributeFpnProposals( to_device(pooler_fmt_boxes, "cpu"), roi_canonical_scale=self.canonical_box_size, roi_canonical_level=self.canonical_level, roi_max_level=self.max_level, roi_min_level=self.min_level, legacy_plus_one=False, ) fpn_outputs = [to_device(x, device) for x in fpn_outputs] rois_fpn_list = fpn_outputs[:-1] rois_idx_restore_int32 = fpn_outputs[-1] roi_feat_fpn_list = [] for roi_fpn, x_level, pooler in zip(rois_fpn_list, x, self.level_poolers): if isinstance(pooler, ROIAlignRotated): c2_roi_align = torch.ops._caffe2.RoIAlignRotated aligned = True else: c2_roi_align = torch.ops._caffe2.RoIAlign aligned = bool(pooler.aligned) if x_level.is_quantized: x_level = x_level.dequantize() roi_feat_fpn = c2_roi_align( x_level, roi_fpn, order="NCHW", spatial_scale=float(pooler.spatial_scale), pooled_h=int(self.output_size[0]), pooled_w=int(self.output_size[1]), sampling_ratio=int(pooler.sampling_ratio), aligned=aligned, ) roi_feat_fpn_list.append(roi_feat_fpn) roi_feat_shuffled = cat(roi_feat_fpn_list, dim=0) assert roi_feat_shuffled.numel() > 0 and rois_idx_restore_int32.numel() > 0, ( "Caffe2 export requires tracing with a model checkpoint + input that can produce valid" " detections. But no detections were obtained with the given checkpoint and input!" ) roi_feat = torch.ops._caffe2.BatchPermutation(roi_feat_shuffled, rois_idx_restore_int32) return roi_feat class Caffe2FastRCNNOutputsInference: def __init__(self, tensor_mode): self.tensor_mode = tensor_mode # whether the output is caffe2 tensor mode def __call__(self, box_predictor, predictions, proposals): """equivalent to FastRCNNOutputLayers.inference""" num_classes = box_predictor.num_classes score_thresh = box_predictor.test_score_thresh nms_thresh = box_predictor.test_nms_thresh topk_per_image = box_predictor.test_topk_per_image is_rotated = len(box_predictor.box2box_transform.weights) == 5 if is_rotated: box_dim = 5 assert box_predictor.box2box_transform.weights[4] == 1, ( "The weights for Rotated BBoxTransform in C2 have only 4 dimensions," + " thus enforcing the angle weight to be 1 for now" ) box2box_transform_weights = box_predictor.box2box_transform.weights[:4] else: box_dim = 4 box2box_transform_weights = box_predictor.box2box_transform.weights class_logits, box_regression = predictions if num_classes + 1 == class_logits.shape[1]: class_prob = F.softmax(class_logits, -1) else: assert num_classes == class_logits.shape[1] class_prob = F.sigmoid(class_logits) # BoxWithNMSLimit will infer num_classes from the shape of the class_prob # So append a zero column as placeholder for the background class class_prob = torch.cat((class_prob, torch.zeros(class_prob.shape[0], 1)), dim=1) assert box_regression.shape[1] % box_dim == 0 cls_agnostic_bbox_reg = box_regression.shape[1] // box_dim == 1 input_tensor_mode = proposals[0].proposal_boxes.tensor.shape[1] == box_dim + 1 rois = type(proposals[0].proposal_boxes).cat([p.proposal_boxes for p in proposals]) device, dtype = rois.tensor.device, rois.tensor.dtype if input_tensor_mode: im_info = proposals[0].image_size rois = rois.tensor else: im_info = torch.tensor( [[sz[0], sz[1], 1.0] for sz in [x.image_size for x in proposals]] ) batch_ids = cat( [ torch.full((b, 1), i, dtype=dtype, device=device) for i, b in enumerate(len(p) for p in proposals) ], dim=0, ) rois = torch.cat([batch_ids, rois.tensor], dim=1) roi_pred_bbox, roi_batch_splits = torch.ops._caffe2.BBoxTransform( to_device(rois, "cpu"), to_device(box_regression, "cpu"), to_device(im_info, "cpu"), weights=box2box_transform_weights, apply_scale=True, rotated=is_rotated, angle_bound_on=True, angle_bound_lo=-180, angle_bound_hi=180, clip_angle_thresh=1.0, legacy_plus_one=False, ) roi_pred_bbox = to_device(roi_pred_bbox, device) roi_batch_splits = to_device(roi_batch_splits, device) nms_outputs = torch.ops._caffe2.BoxWithNMSLimit( to_device(class_prob, "cpu"), to_device(roi_pred_bbox, "cpu"), to_device(roi_batch_splits, "cpu"), score_thresh=float(score_thresh), nms=float(nms_thresh), detections_per_im=int(topk_per_image), soft_nms_enabled=False, soft_nms_method="linear", soft_nms_sigma=0.5, soft_nms_min_score_thres=0.001, rotated=is_rotated, cls_agnostic_bbox_reg=cls_agnostic_bbox_reg, input_boxes_include_bg_cls=False, output_classes_include_bg_cls=False, legacy_plus_one=False, ) roi_score_nms = to_device(nms_outputs[0], device) roi_bbox_nms = to_device(nms_outputs[1], device) roi_class_nms = to_device(nms_outputs[2], device) roi_batch_splits_nms = to_device(nms_outputs[3], device) roi_keeps_nms = to_device(nms_outputs[4], device) roi_keeps_size_nms = to_device(nms_outputs[5], device) if not self.tensor_mode: roi_class_nms = roi_class_nms.to(torch.int64) roi_batch_ids = cat( [ torch.full((b, 1), i, dtype=dtype, device=device) for i, b in enumerate(int(x.item()) for x in roi_batch_splits_nms) ], dim=0, ) roi_class_nms = alias(roi_class_nms, "class_nms") roi_score_nms = alias(roi_score_nms, "score_nms") roi_bbox_nms = alias(roi_bbox_nms, "bbox_nms") roi_batch_splits_nms = alias(roi_batch_splits_nms, "batch_splits_nms") roi_keeps_nms = alias(roi_keeps_nms, "keeps_nms") roi_keeps_size_nms = alias(roi_keeps_size_nms, "keeps_size_nms") results = InstancesList( im_info=im_info, indices=roi_batch_ids[:, 0], extra_fields={ "pred_boxes": Caffe2Boxes(roi_bbox_nms), "scores": roi_score_nms, "pred_classes": roi_class_nms, }, ) if not self.tensor_mode: results = InstancesList.to_d2_instances_list(results) batch_splits = roi_batch_splits_nms.int().tolist() kept_indices = list(roi_keeps_nms.to(torch.int64).split(batch_splits)) else: results = [results] kept_indices = [roi_keeps_nms] return results, kept_indices class Caffe2MaskRCNNInference: def __call__(self, pred_mask_logits, pred_instances): """equivalent to mask_head.mask_rcnn_inference""" if all(isinstance(x, InstancesList) for x in pred_instances): assert len(pred_instances) == 1 mask_probs_pred = pred_mask_logits.sigmoid() mask_probs_pred = alias(mask_probs_pred, "mask_fcn_probs") pred_instances[0].pred_masks = mask_probs_pred else: mask_rcnn_inference(pred_mask_logits, pred_instances) class Caffe2KeypointRCNNInference: def __init__(self, use_heatmap_max_keypoint): self.use_heatmap_max_keypoint = use_heatmap_max_keypoint def __call__(self, pred_keypoint_logits, pred_instances): # just return the keypoint heatmap for now, # there will be option to call HeatmapMaxKeypointOp output = alias(pred_keypoint_logits, "kps_score") if all(isinstance(x, InstancesList) for x in pred_instances): assert len(pred_instances) == 1 if self.use_heatmap_max_keypoint: device = output.device output = torch.ops._caffe2.HeatmapMaxKeypoint( to_device(output, "cpu"), pred_instances[0].pred_boxes.tensor, should_output_softmax=True, # worth make it configerable? ) output = to_device(output, device) output = alias(output, "keypoints_out") pred_instances[0].pred_keypoints = output return pred_keypoint_logits