# Copyright (c) Facebook, Inc. and its affiliates. import os from typing import Optional import pkg_resources import torch from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import CfgNode, LazyConfig, get_cfg, instantiate from detectron2.modeling import build_model class _ModelZooUrls(object): """ Mapping from names to officially released Detectron2 pre-trained models. """ S3_PREFIX = "https://dl.fbaipublicfiles.com/detectron2/" # format: {config_path.yaml} -> model_id/model_final_{commit}.pkl CONFIG_PATH_TO_URL_SUFFIX = { # COCO Detection with Faster R-CNN "COCO-Detection/faster_rcnn_R_50_C4_1x": "137257644/model_final_721ade.pkl", "COCO-Detection/faster_rcnn_R_50_DC5_1x": "137847829/model_final_51d356.pkl", "COCO-Detection/faster_rcnn_R_50_FPN_1x": "137257794/model_final_b275ba.pkl", "COCO-Detection/faster_rcnn_R_50_C4_3x": "137849393/model_final_f97cb7.pkl", "COCO-Detection/faster_rcnn_R_50_DC5_3x": "137849425/model_final_68d202.pkl", "COCO-Detection/faster_rcnn_R_50_FPN_3x": "137849458/model_final_280758.pkl", "COCO-Detection/faster_rcnn_R_101_C4_3x": "138204752/model_final_298dad.pkl", "COCO-Detection/faster_rcnn_R_101_DC5_3x": "138204841/model_final_3e0943.pkl", "COCO-Detection/faster_rcnn_R_101_FPN_3x": "137851257/model_final_f6e8b1.pkl", "COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x": "139173657/model_final_68b088.pkl", # COCO Detection with RetinaNet "COCO-Detection/retinanet_R_50_FPN_1x": "190397773/model_final_bfca0b.pkl", "COCO-Detection/retinanet_R_50_FPN_3x": "190397829/model_final_5bd44e.pkl", "COCO-Detection/retinanet_R_101_FPN_3x": "190397697/model_final_971ab9.pkl", # COCO Detection with RPN and Fast R-CNN "COCO-Detection/rpn_R_50_C4_1x": "137258005/model_final_450694.pkl", "COCO-Detection/rpn_R_50_FPN_1x": "137258492/model_final_02ce48.pkl", "COCO-Detection/fast_rcnn_R_50_FPN_1x": "137635226/model_final_e5f7ce.pkl", # COCO Instance Segmentation Baselines with Mask R-CNN "COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x": "137259246/model_final_9243eb.pkl", "COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x": "137260150/model_final_4f86c3.pkl", "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x": "137260431/model_final_a54504.pkl", "COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x": "137849525/model_final_4ce675.pkl", "COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x": "137849551/model_final_84107b.pkl", "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x": "137849600/model_final_f10217.pkl", "COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x": "138363239/model_final_a2914c.pkl", "COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x": "138363294/model_final_0464b7.pkl", "COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x": "138205316/model_final_a3ec72.pkl", "COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x": "139653917/model_final_2d9806.pkl", # noqa # New baselines using Large-Scale Jitter and Longer Training Schedule "new_baselines/mask_rcnn_R_50_FPN_100ep_LSJ": "42047764/model_final_bb69de.pkl", "new_baselines/mask_rcnn_R_50_FPN_200ep_LSJ": "42047638/model_final_89a8d3.pkl", "new_baselines/mask_rcnn_R_50_FPN_400ep_LSJ": "42019571/model_final_14d201.pkl", "new_baselines/mask_rcnn_R_101_FPN_100ep_LSJ": "42025812/model_final_4f7b58.pkl", "new_baselines/mask_rcnn_R_101_FPN_200ep_LSJ": "42131867/model_final_0bb7ae.pkl", "new_baselines/mask_rcnn_R_101_FPN_400ep_LSJ": "42073830/model_final_f96b26.pkl", "new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ": "42047771/model_final_b7fbab.pkl", # noqa "new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_200ep_LSJ": "42132721/model_final_5d87c1.pkl", # noqa "new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_400ep_LSJ": "42025447/model_final_f1362d.pkl", # noqa "new_baselines/mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ": "42047784/model_final_6ba57e.pkl", # noqa "new_baselines/mask_rcnn_regnety_4gf_dds_FPN_200ep_LSJ": "42047642/model_final_27b9c1.pkl", # noqa "new_baselines/mask_rcnn_regnety_4gf_dds_FPN_400ep_LSJ": "42045954/model_final_ef3a80.pkl", # noqa # COCO Person Keypoint Detection Baselines with Keypoint R-CNN "COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x": "137261548/model_final_04e291.pkl", "COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x": "137849621/model_final_a6e10b.pkl", "COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x": "138363331/model_final_997cc7.pkl", "COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x": "139686956/model_final_5ad38f.pkl", # COCO Panoptic Segmentation Baselines with Panoptic FPN "COCO-PanopticSegmentation/panoptic_fpn_R_50_1x": "139514544/model_final_dbfeb4.pkl", "COCO-PanopticSegmentation/panoptic_fpn_R_50_3x": "139514569/model_final_c10459.pkl", "COCO-PanopticSegmentation/panoptic_fpn_R_101_3x": "139514519/model_final_cafdb1.pkl", # LVIS Instance Segmentation Baselines with Mask R-CNN "LVISv0.5-InstanceSegmentation/mask_rcnn_R_50_FPN_1x": "144219072/model_final_571f7c.pkl", # noqa "LVISv0.5-InstanceSegmentation/mask_rcnn_R_101_FPN_1x": "144219035/model_final_824ab5.pkl", # noqa "LVISv0.5-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x": "144219108/model_final_5e3439.pkl", # noqa # Cityscapes & Pascal VOC Baselines "Cityscapes/mask_rcnn_R_50_FPN": "142423278/model_final_af9cf5.pkl", "PascalVOC-Detection/faster_rcnn_R_50_C4": "142202221/model_final_b1acc2.pkl", # Other Settings "Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5": "138602867/model_final_65c703.pkl", "Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5": "144998336/model_final_821d0b.pkl", "Misc/cascade_mask_rcnn_R_50_FPN_1x": "138602847/model_final_e9d89b.pkl", "Misc/cascade_mask_rcnn_R_50_FPN_3x": "144998488/model_final_480dd8.pkl", "Misc/mask_rcnn_R_50_FPN_3x_syncbn": "169527823/model_final_3b3c51.pkl", "Misc/mask_rcnn_R_50_FPN_3x_gn": "138602888/model_final_dc5d9e.pkl", "Misc/scratch_mask_rcnn_R_50_FPN_3x_gn": "138602908/model_final_01ca85.pkl", "Misc/scratch_mask_rcnn_R_50_FPN_9x_gn": "183808979/model_final_da7b4c.pkl", "Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn": "184226666/model_final_5ce33e.pkl", "Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x": "139797668/model_final_be35db.pkl", "Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv": "18131413/model_0039999_e76410.pkl", # noqa # D1 Comparisons "Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x": "137781054/model_final_7ab50c.pkl", # noqa "Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x": "137781281/model_final_62ca52.pkl", # noqa "Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x": "137781195/model_final_cce136.pkl", } @staticmethod def query(config_path: str) -> Optional[str]: """ Args: config_path: relative config filename """ name = config_path.replace(".yaml", "").replace(".py", "") if name in _ModelZooUrls.CONFIG_PATH_TO_URL_SUFFIX: suffix = _ModelZooUrls.CONFIG_PATH_TO_URL_SUFFIX[name] return _ModelZooUrls.S3_PREFIX + name + "/" + suffix return None def get_checkpoint_url(config_path): """ Returns the URL to the model trained using the given config Args: config_path (str): config file name relative to detectron2's "configs/" directory, e.g., "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml" Returns: str: a URL to the model """ url = _ModelZooUrls.query(config_path) if url is None: raise RuntimeError("Pretrained model for {} is not available!".format(config_path)) return url def get_config_file(config_path): """ Returns path to a builtin config file. Args: config_path (str): config file name relative to detectron2's "configs/" directory, e.g., "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml" Returns: str: the real path to the config file. """ cfg_file = pkg_resources.resource_filename( "detectron2.model_zoo", os.path.join("configs", config_path) ) if not os.path.exists(cfg_file): raise RuntimeError("{} not available in Model Zoo!".format(config_path)) return cfg_file def get_config(config_path, trained: bool = False): """ Returns a config object for a model in model zoo. Args: config_path (str): config file name relative to detectron2's "configs/" directory, e.g., "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml" trained (bool): If True, will set ``MODEL.WEIGHTS`` to trained model zoo weights. If False, the checkpoint specified in the config file's ``MODEL.WEIGHTS`` is used instead; this will typically (though not always) initialize a subset of weights using an ImageNet pre-trained model, while randomly initializing the other weights. Returns: CfgNode or omegaconf.DictConfig: a config object """ cfg_file = get_config_file(config_path) if cfg_file.endswith(".yaml"): cfg = get_cfg() cfg.merge_from_file(cfg_file) if trained: cfg.MODEL.WEIGHTS = get_checkpoint_url(config_path) return cfg elif cfg_file.endswith(".py"): cfg = LazyConfig.load(cfg_file) if trained: url = get_checkpoint_url(config_path) if "train" in cfg and "init_checkpoint" in cfg.train: cfg.train.init_checkpoint = url else: raise NotImplementedError return cfg def get(config_path, trained: bool = False, device: Optional[str] = None): """ Get a model specified by relative path under Detectron2's official ``configs/`` directory. Args: config_path (str): config file name relative to detectron2's "configs/" directory, e.g., "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml" trained (bool): see :func:`get_config`. device (str or None): overwrite the device in config, if given. Returns: nn.Module: a detectron2 model. Will be in training mode. Example: :: from detectron2 import model_zoo model = model_zoo.get("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml", trained=True) """ cfg = get_config(config_path, trained) if device is None and not torch.cuda.is_available(): device = "cpu" if device is not None and isinstance(cfg, CfgNode): cfg.MODEL.DEVICE = device if isinstance(cfg, CfgNode): model = build_model(cfg) DetectionCheckpointer(model).load(cfg.MODEL.WEIGHTS) else: model = instantiate(cfg.model) if device is not None: model = model.to(device) if "train" in cfg and "init_checkpoint" in cfg.train: DetectionCheckpointer(model).load(cfg.train.init_checkpoint) return model