# Copyright (c) Facebook, Inc. and its affiliates. import math from typing import List, Tuple import torch from fvcore.nn import giou_loss, smooth_l1_loss from torch.nn import functional as F from detectron2.layers import cat, ciou_loss, diou_loss from detectron2.structures import Boxes # Value for clamping large dw and dh predictions. The heuristic is that we clamp # such that dw and dh are no larger than what would transform a 16px box into a # 1000px box (based on a small anchor, 16px, and a typical image size, 1000px). _DEFAULT_SCALE_CLAMP = math.log(1000.0 / 16) __all__ = ["Box2BoxTransform", "Box2BoxTransformRotated", "Box2BoxTransformLinear"] @torch.jit.script class Box2BoxTransform(object): """ The box-to-box transform defined in R-CNN. The transformation is parameterized by 4 deltas: (dx, dy, dw, dh). The transformation scales the box's width and height by exp(dw), exp(dh) and shifts a box's center by the offset (dx * width, dy * height). """ def __init__( self, weights: Tuple[float, float, float, float], scale_clamp: float = _DEFAULT_SCALE_CLAMP ): """ Args: weights (4-element tuple): Scaling factors that are applied to the (dx, dy, dw, dh) deltas. In Fast R-CNN, these were originally set such that the deltas have unit variance; now they are treated as hyperparameters of the system. scale_clamp (float): When predicting deltas, the predicted box scaling factors (dw and dh) are clamped such that they are <= scale_clamp. """ self.weights = weights self.scale_clamp = scale_clamp def get_deltas(self, src_boxes, target_boxes): """ Get box regression transformation deltas (dx, dy, dw, dh) that can be used to transform the `src_boxes` into the `target_boxes`. That is, the relation ``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true (unless any delta is too large and is clamped). Args: src_boxes (Tensor): source boxes, e.g., object proposals target_boxes (Tensor): target of the transformation, e.g., ground-truth boxes. """ assert isinstance(src_boxes, torch.Tensor), type(src_boxes) assert isinstance(target_boxes, torch.Tensor), type(target_boxes) src_widths = src_boxes[:, 2] - src_boxes[:, 0] src_heights = src_boxes[:, 3] - src_boxes[:, 1] src_ctr_x = src_boxes[:, 0] + 0.5 * src_widths src_ctr_y = src_boxes[:, 1] + 0.5 * src_heights target_widths = target_boxes[:, 2] - target_boxes[:, 0] target_heights = target_boxes[:, 3] - target_boxes[:, 1] target_ctr_x = target_boxes[:, 0] + 0.5 * target_widths target_ctr_y = target_boxes[:, 1] + 0.5 * target_heights wx, wy, ww, wh = self.weights dx = wx * (target_ctr_x - src_ctr_x) / src_widths dy = wy * (target_ctr_y - src_ctr_y) / src_heights dw = ww * torch.log(target_widths / src_widths) dh = wh * torch.log(target_heights / src_heights) deltas = torch.stack((dx, dy, dw, dh), dim=1) assert (src_widths > 0).all().item(), "Input boxes to Box2BoxTransform are not valid!" return deltas def apply_deltas(self, deltas, boxes): """ Apply transformation `deltas` (dx, dy, dw, dh) to `boxes`. Args: deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1. deltas[i] represents k potentially different class-specific box transformations for the single box boxes[i]. boxes (Tensor): boxes to transform, of shape (N, 4) """ deltas = deltas.float() # ensure fp32 for decoding precision boxes = boxes.to(deltas.dtype) widths = boxes[:, 2] - boxes[:, 0] heights = boxes[:, 3] - boxes[:, 1] ctr_x = boxes[:, 0] + 0.5 * widths ctr_y = boxes[:, 1] + 0.5 * heights wx, wy, ww, wh = self.weights dx = deltas[:, 0::4] / wx dy = deltas[:, 1::4] / wy dw = deltas[:, 2::4] / ww dh = deltas[:, 3::4] / wh # Prevent sending too large values into torch.exp() dw = torch.clamp(dw, max=self.scale_clamp) dh = torch.clamp(dh, max=self.scale_clamp) pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] pred_w = torch.exp(dw) * widths[:, None] pred_h = torch.exp(dh) * heights[:, None] x1 = pred_ctr_x - 0.5 * pred_w y1 = pred_ctr_y - 0.5 * pred_h x2 = pred_ctr_x + 0.5 * pred_w y2 = pred_ctr_y + 0.5 * pred_h pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) return pred_boxes.reshape(deltas.shape) @torch.jit.script class Box2BoxTransformRotated(object): """ The box-to-box transform defined in Rotated R-CNN. The transformation is parameterized by 5 deltas: (dx, dy, dw, dh, da). The transformation scales the box's width and height by exp(dw), exp(dh), shifts a box's center by the offset (dx * width, dy * height), and rotate a box's angle by da (radians). Note: angles of deltas are in radians while angles of boxes are in degrees. """ def __init__( self, weights: Tuple[float, float, float, float, float], scale_clamp: float = _DEFAULT_SCALE_CLAMP, ): """ Args: weights (5-element tuple): Scaling factors that are applied to the (dx, dy, dw, dh, da) deltas. These are treated as hyperparameters of the system. scale_clamp (float): When predicting deltas, the predicted box scaling factors (dw and dh) are clamped such that they are <= scale_clamp. """ self.weights = weights self.scale_clamp = scale_clamp def get_deltas(self, src_boxes, target_boxes): """ Get box regression transformation deltas (dx, dy, dw, dh, da) that can be used to transform the `src_boxes` into the `target_boxes`. That is, the relation ``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true (unless any delta is too large and is clamped). Args: src_boxes (Tensor): Nx5 source boxes, e.g., object proposals target_boxes (Tensor): Nx5 target of the transformation, e.g., ground-truth boxes. """ assert isinstance(src_boxes, torch.Tensor), type(src_boxes) assert isinstance(target_boxes, torch.Tensor), type(target_boxes) src_ctr_x, src_ctr_y, src_widths, src_heights, src_angles = torch.unbind(src_boxes, dim=1) target_ctr_x, target_ctr_y, target_widths, target_heights, target_angles = torch.unbind( target_boxes, dim=1 ) wx, wy, ww, wh, wa = self.weights dx = wx * (target_ctr_x - src_ctr_x) / src_widths dy = wy * (target_ctr_y - src_ctr_y) / src_heights dw = ww * torch.log(target_widths / src_widths) dh = wh * torch.log(target_heights / src_heights) # Angles of deltas are in radians while angles of boxes are in degrees. # the conversion to radians serve as a way to normalize the values da = target_angles - src_angles da = (da + 180.0) % 360.0 - 180.0 # make it in [-180, 180) da *= wa * math.pi / 180.0 deltas = torch.stack((dx, dy, dw, dh, da), dim=1) assert ( (src_widths > 0).all().item() ), "Input boxes to Box2BoxTransformRotated are not valid!" return deltas def apply_deltas(self, deltas, boxes): """ Apply transformation `deltas` (dx, dy, dw, dh, da) to `boxes`. Args: deltas (Tensor): transformation deltas of shape (N, k*5). deltas[i] represents box transformation for the single box boxes[i]. boxes (Tensor): boxes to transform, of shape (N, 5) """ assert deltas.shape[1] % 5 == 0 and boxes.shape[1] == 5 boxes = boxes.to(deltas.dtype).unsqueeze(2) ctr_x = boxes[:, 0] ctr_y = boxes[:, 1] widths = boxes[:, 2] heights = boxes[:, 3] angles = boxes[:, 4] wx, wy, ww, wh, wa = self.weights dx = deltas[:, 0::5] / wx dy = deltas[:, 1::5] / wy dw = deltas[:, 2::5] / ww dh = deltas[:, 3::5] / wh da = deltas[:, 4::5] / wa # Prevent sending too large values into torch.exp() dw = torch.clamp(dw, max=self.scale_clamp) dh = torch.clamp(dh, max=self.scale_clamp) pred_boxes = torch.zeros_like(deltas) pred_boxes[:, 0::5] = dx * widths + ctr_x # x_ctr pred_boxes[:, 1::5] = dy * heights + ctr_y # y_ctr pred_boxes[:, 2::5] = torch.exp(dw) * widths # width pred_boxes[:, 3::5] = torch.exp(dh) * heights # height # Following original RRPN implementation, # angles of deltas are in radians while angles of boxes are in degrees. pred_angle = da * 180.0 / math.pi + angles pred_angle = (pred_angle + 180.0) % 360.0 - 180.0 # make it in [-180, 180) pred_boxes[:, 4::5] = pred_angle return pred_boxes class Box2BoxTransformLinear: """ The linear box-to-box transform defined in FCOS. The transformation is parameterized by the distance from the center of (square) src box to 4 edges of the target box. """ def __init__(self, normalize_by_size=True): """ Args: normalize_by_size: normalize deltas by the size of src (anchor) boxes. """ self.normalize_by_size = normalize_by_size def get_deltas(self, src_boxes, target_boxes): """ Get box regression transformation deltas (dx1, dy1, dx2, dy2) that can be used to transform the `src_boxes` into the `target_boxes`. That is, the relation ``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true. The center of src must be inside target boxes. Args: src_boxes (Tensor): square source boxes, e.g., anchors target_boxes (Tensor): target of the transformation, e.g., ground-truth boxes. """ assert isinstance(src_boxes, torch.Tensor), type(src_boxes) assert isinstance(target_boxes, torch.Tensor), type(target_boxes) src_ctr_x = 0.5 * (src_boxes[:, 0] + src_boxes[:, 2]) src_ctr_y = 0.5 * (src_boxes[:, 1] + src_boxes[:, 3]) target_l = src_ctr_x - target_boxes[:, 0] target_t = src_ctr_y - target_boxes[:, 1] target_r = target_boxes[:, 2] - src_ctr_x target_b = target_boxes[:, 3] - src_ctr_y deltas = torch.stack((target_l, target_t, target_r, target_b), dim=1) if self.normalize_by_size: stride = (src_boxes[:, 2] - src_boxes[:, 0]).unsqueeze(1) deltas = deltas / stride return deltas def apply_deltas(self, deltas, boxes): """ Apply transformation `deltas` (dx1, dy1, dx2, dy2) to `boxes`. Args: deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1. deltas[i] represents k potentially different class-specific box transformations for the single box boxes[i]. boxes (Tensor): boxes to transform, of shape (N, 4) """ # Ensure the output is a valid box. See Sec 2.1 of https://arxiv.org/abs/2006.09214 deltas = F.relu(deltas) boxes = boxes.to(deltas.dtype) ctr_x = 0.5 * (boxes[:, 0] + boxes[:, 2]) ctr_y = 0.5 * (boxes[:, 1] + boxes[:, 3]) if self.normalize_by_size: stride = (boxes[:, 2] - boxes[:, 0]).unsqueeze(1) deltas = deltas * stride l = deltas[:, 0::4] t = deltas[:, 1::4] r = deltas[:, 2::4] b = deltas[:, 3::4] pred_boxes = torch.zeros_like(deltas) pred_boxes[:, 0::4] = ctr_x[:, None] - l # x1 pred_boxes[:, 1::4] = ctr_y[:, None] - t # y1 pred_boxes[:, 2::4] = ctr_x[:, None] + r # x2 pred_boxes[:, 3::4] = ctr_y[:, None] + b # y2 return pred_boxes def _dense_box_regression_loss( anchors: List[Boxes], box2box_transform: Box2BoxTransform, pred_anchor_deltas: List[torch.Tensor], gt_boxes: List[torch.Tensor], fg_mask: torch.Tensor, box_reg_loss_type="smooth_l1", smooth_l1_beta=0.0, ): """ Compute loss for dense multi-level box regression. Loss is accumulated over ``fg_mask``. Args: anchors: #lvl anchor boxes, each is (HixWixA, 4) pred_anchor_deltas: #lvl predictions, each is (N, HixWixA, 4) gt_boxes: N ground truth boxes, each has shape (R, 4) (R = sum(Hi * Wi * A)) fg_mask: the foreground boolean mask of shape (N, R) to compute loss on box_reg_loss_type (str): Loss type to use. Supported losses: "smooth_l1", "giou", "diou", "ciou". smooth_l1_beta (float): beta parameter for the smooth L1 regression loss. Default to use L1 loss. Only used when `box_reg_loss_type` is "smooth_l1" """ anchors = type(anchors[0]).cat(anchors).tensor # (R, 4) if box_reg_loss_type == "smooth_l1": gt_anchor_deltas = [box2box_transform.get_deltas(anchors, k) for k in gt_boxes] gt_anchor_deltas = torch.stack(gt_anchor_deltas) # (N, R, 4) loss_box_reg = smooth_l1_loss( cat(pred_anchor_deltas, dim=1)[fg_mask], gt_anchor_deltas[fg_mask], beta=smooth_l1_beta, reduction="sum", ) elif box_reg_loss_type == "giou": pred_boxes = [ box2box_transform.apply_deltas(k, anchors) for k in cat(pred_anchor_deltas, dim=1) ] loss_box_reg = giou_loss( torch.stack(pred_boxes)[fg_mask], torch.stack(gt_boxes)[fg_mask], reduction="sum" ) elif box_reg_loss_type == "diou": pred_boxes = [ box2box_transform.apply_deltas(k, anchors) for k in cat(pred_anchor_deltas, dim=1) ] loss_box_reg = diou_loss( torch.stack(pred_boxes)[fg_mask], torch.stack(gt_boxes)[fg_mask], reduction="sum" ) elif box_reg_loss_type == "ciou": pred_boxes = [ box2box_transform.apply_deltas(k, anchors) for k in cat(pred_anchor_deltas, dim=1) ] loss_box_reg = ciou_loss( torch.stack(pred_boxes)[fg_mask], torch.stack(gt_boxes)[fg_mask], reduction="sum" ) else: raise ValueError(f"Invalid dense box regression loss type '{box_reg_loss_type}'") return loss_box_reg