Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
import numpy as np | |
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
st.set_page_config( | |
page_title="", layout="wide", initial_sidebar_state="expanded" | |
) | |
def load_model(model_name): | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
return model | |
tokenizer = AutoTokenizer.from_pretrained("snoop2head/KoBrailleT5-small-v1") | |
model = load_model("snoop2head/KoBrailleT5-small-v1") | |
st.title("한국어 점역과 역점역") | |
st.write("Braille Pattern Conversion") | |
default_value = '⠍⠗⠠⠪⠋⠕⠀⠘⠪⠐⠗⠒⠊⠕⠐⠀⠘⠮⠐⠍⠨⠟⠀⠚⠣⠕⠚⠕⠂' | |
src_text = st.text_area( | |
"번역하고 싶은 문장을 입력하세요:", | |
default_value, | |
height=300, | |
max_chars=100, | |
) | |
print(src_text) | |
if src_text == "": | |
st.warning("Please **enter text** for translation") | |
else: | |
# translate into english sentence | |
src_text += "</s>" | |
translation_result = model.generate( | |
tokenizer( | |
src_text, | |
return_tensors="pt", | |
padding="max_length", | |
truncation=True, | |
max_length=64, | |
).input_ids, | |
) | |
translation_result = tokenizer.decode( | |
translation_result[0], | |
clean_up_tokenization_spaces=True, | |
skip_special_tokens=True, | |
) | |
print(f"{src_text} -> {translation_result}") | |
st.write(translation_result) | |
print(translation_result) | |