Spaces:
Sleeping
Sleeping
snoop2head
commited on
Commit
ยท
5ac8ef8
1
Parent(s):
47f452f
initial commit
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import numpy as np
|
3 |
+
import streamlit as st
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
+
|
6 |
+
|
7 |
+
st.set_page_config(
|
8 |
+
page_title="", layout="wide", initial_sidebar_state="expanded"
|
9 |
+
)
|
10 |
+
|
11 |
+
@st.cache
|
12 |
+
def load_model(model_name):
|
13 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
14 |
+
return model
|
15 |
+
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained("snoop2head/KoBrailleT5-small-v1")
|
17 |
+
model = load_model("snoop2head/KoBrailleT5-small-v1")
|
18 |
+
|
19 |
+
|
20 |
+
st.title("ํ๊ตญ์ด ์ ์ญ๊ณผ ์ญ์ ์ญ")
|
21 |
+
st.write("Braille Pattern Conversion")
|
22 |
+
|
23 |
+
|
24 |
+
default_value = '์์คํค ๋ธ๋๋ ๋ธ๋ฃจ์ง ํ์ดํ'
|
25 |
+
src_text = st.text_area(
|
26 |
+
"๋ฒ์ญํ๊ณ ์ถ์ ๋ฌธ์ฅ์ ์
๋ ฅํ์ธ์:",
|
27 |
+
default_value,
|
28 |
+
height=300,
|
29 |
+
max_chars=100,
|
30 |
+
)
|
31 |
+
print(src_text)
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
if src_text == "":
|
36 |
+
st.warning("Please **enter text** for translation")
|
37 |
+
else:
|
38 |
+
# translate into english sentence
|
39 |
+
|
40 |
+
translation_result = model.generate(
|
41 |
+
**tokenizer(
|
42 |
+
src_text,
|
43 |
+
return_tensors="pt",
|
44 |
+
padding="max_length",
|
45 |
+
truncation=True,
|
46 |
+
max_length=64,
|
47 |
+
),
|
48 |
+
max_length=64,
|
49 |
+
num_beams=5,
|
50 |
+
repetition_penalty=1.3,
|
51 |
+
no_repeat_ngram_size=3,
|
52 |
+
num_return_sequences=1,
|
53 |
+
)
|
54 |
+
translation_result = tokenizer.decode(
|
55 |
+
translation_result[0],
|
56 |
+
clean_up_tokenization_spaces=True,
|
57 |
+
skip_special_tokens=True,
|
58 |
+
)
|
59 |
+
|
60 |
+
print(f"{src_text} -> {translation_result}")
|
61 |
+
|
62 |
+
st.write(translation_result)
|
63 |
+
print(translation_result)
|