# -*- coding: utf-8 -*- import numpy as np import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM st.set_page_config( page_title="", layout="wide", initial_sidebar_state="expanded" ) @st.cache def load_model(model_name): model = AutoModelForSeq2SeqLM.from_pretrained(model_name) return model tokenizer = AutoTokenizer.from_pretrained("snoop2head/KoBrailleT5-small-v1") model = load_model("snoop2head/KoBrailleT5-small-v1") st.title("한국어 점역과 역점역") st.write("Braille Pattern Conversion") default_value = '위스키 브랜디 블루진 하이힐' src_text = st.text_area( "번역하고 싶은 문장을 입력하세요:", default_value, height=300, max_chars=100, ) print(src_text) if src_text == "": st.warning("Please **enter text** for translation") else: # translate into english sentence translation_result = model.generate( **tokenizer( src_text, return_tensors="pt", padding="max_length", truncation=True, max_length=64, ), max_length=64, num_beams=5, repetition_penalty=1.3, no_repeat_ngram_size=3, num_return_sequences=1, ) translation_result = tokenizer.decode( translation_result[0], clean_up_tokenization_spaces=True, skip_special_tokens=True, ) print(f"{src_text} -> {translation_result}") st.write(translation_result) print(translation_result)