Spaces:
Sleeping
Sleeping
add probability calculation
Browse files- rag_app/rag_2.py +10 -18
rag_app/rag_2.py
CHANGED
@@ -36,14 +36,14 @@ def completion_to_prompt(completion):
|
|
36 |
llm = LlamaCPP(
|
37 |
model_path="models/Llama-3.2-1B-Instruct-Q4_K_M.gguf",
|
38 |
temperature=0.1,
|
39 |
-
max_new_tokens=
|
40 |
context_window=16384,
|
41 |
model_kwargs={"n_gpu_layers":-1, 'logits_all': False},
|
42 |
messages_to_prompt=messages_to_prompt,
|
43 |
completion_to_prompt=completion_to_prompt,)
|
44 |
|
45 |
llm2 = Llama(model_path="models/Llama-3.2-1B-Instruct-Q4_K_M.gguf",
|
46 |
-
n_gpu_layers=-1, n_ctx=8000)
|
47 |
|
48 |
|
49 |
embedding_model = HuggingFaceEmbedding(
|
@@ -92,24 +92,16 @@ def is_relevant(query, index, threshold=0.7):
|
|
92 |
|
93 |
def get_sequence_probability(llm, input_sequence):
|
94 |
input_tokens = llm.tokenize(input_sequence.encode("utf-8"))
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
print("evaluating tokens for calculating log probs")
|
102 |
-
llm.eval(eval_tokens)
|
103 |
|
104 |
-
probs = llm.logits_to_logprobs(llm.eval_logits)
|
105 |
-
sequence_logits.append(llm.eval_logits[-1][token])
|
106 |
-
sequence_logprobs.append(probs[-1][token])
|
107 |
-
eval_tokens.append(token)
|
108 |
-
|
109 |
-
total_log_prob = sum(sequence_logprobs)
|
110 |
sequence_probability = math.exp(total_log_prob)
|
111 |
return sequence_probability
|
112 |
-
|
113 |
|
114 |
def answer_question(query):
|
115 |
if is_harmful(query):
|
@@ -142,7 +134,7 @@ def answer_question(query):
|
|
142 |
retriever=retriever,
|
143 |
node_postprocessors=[reranker],
|
144 |
)
|
145 |
-
response = keyword_query_engine.query(query)
|
146 |
response_text = str(response)
|
147 |
response_prob = get_sequence_probability(llm2, response_text)
|
148 |
print(f"Output probability: {response_prob}")
|
|
|
36 |
llm = LlamaCPP(
|
37 |
model_path="models/Llama-3.2-1B-Instruct-Q4_K_M.gguf",
|
38 |
temperature=0.1,
|
39 |
+
max_new_tokens=128,
|
40 |
context_window=16384,
|
41 |
model_kwargs={"n_gpu_layers":-1, 'logits_all': False},
|
42 |
messages_to_prompt=messages_to_prompt,
|
43 |
completion_to_prompt=completion_to_prompt,)
|
44 |
|
45 |
llm2 = Llama(model_path="models/Llama-3.2-1B-Instruct-Q4_K_M.gguf",
|
46 |
+
n_gpu_layers=-1, n_ctx=8000, logits_all=True)
|
47 |
|
48 |
|
49 |
embedding_model = HuggingFaceEmbedding(
|
|
|
92 |
|
93 |
def get_sequence_probability(llm, input_sequence):
|
94 |
input_tokens = llm.tokenize(input_sequence.encode("utf-8"))
|
95 |
+
llm.eval(input_tokens)
|
96 |
+
probs = llm.logits_to_logprobs(llm.eval_logits)
|
97 |
+
total_log_prob = 0.0
|
98 |
+
for i, token in enumerate(input_tokens):
|
99 |
+
token_log_prob = probs[i, token]
|
100 |
+
total_log_prob += token_log_prob
|
|
|
|
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
sequence_probability = math.exp(total_log_prob)
|
103 |
return sequence_probability
|
104 |
+
|
105 |
|
106 |
def answer_question(query):
|
107 |
if is_harmful(query):
|
|
|
134 |
retriever=retriever,
|
135 |
node_postprocessors=[reranker],
|
136 |
)
|
137 |
+
response = keyword_query_engine.query(f"Answer in less than 100 words: \nQuery:{query}")
|
138 |
response_text = str(response)
|
139 |
response_prob = get_sequence_probability(llm2, response_text)
|
140 |
print(f"Output probability: {response_prob}")
|