Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torchaudio
|
3 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
4 |
+
|
5 |
+
# Load the Whisper model and processor
|
6 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
|
7 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
|
8 |
+
|
9 |
+
# Sidebar for file upload
|
10 |
+
st.sidebar.title("Upload your audio file")
|
11 |
+
uploaded_file = st.sidebar.file_uploader("Choose an audio file", type=["mp3", "wav", "mp4"])
|
12 |
+
|
13 |
+
if uploaded_file:
|
14 |
+
st.sidebar.audio(uploaded_file)
|
15 |
+
|
16 |
+
# Process the uploaded file
|
17 |
+
audio_tensor, sampling_rate = torchaudio.load(uploaded_file)
|
18 |
+
resampler = torchaudio.transforms.Resample(sampling_rate, 16000)
|
19 |
+
resampled_waveform = resampler(audio_tensor)
|
20 |
+
|
21 |
+
segment_duration = 120 # Segment duration in seconds (2 minutes)
|
22 |
+
num_segments = len(resampled_waveform[0]) // (segment_duration * 16000)
|
23 |
+
segment_transcriptions = []
|
24 |
+
|
25 |
+
# Transcribe each segment
|
26 |
+
for i in range(num_segments):
|
27 |
+
start = i * segment_duration * 16000
|
28 |
+
end = min(len(resampled_waveform[0]), (i + 1) * segment_duration * 16000)
|
29 |
+
segment = resampled_waveform[0][start:end]
|
30 |
+
|
31 |
+
# Transcribe the segment
|
32 |
+
input_features = processor(
|
33 |
+
segment, sampling_rate=16000, return_tensors="pt"
|
34 |
+
).input_features
|
35 |
+
|
36 |
+
predicted_ids = model.generate(input_features)
|
37 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
38 |
+
|
39 |
+
segment_transcriptions.append(transcription[0])
|
40 |
+
|
41 |
+
# Combine segment transcriptions into the full transcript
|
42 |
+
full_transcript = " ".join(segment_transcriptions)
|
43 |
+
|
44 |
+
# Display the transcript
|
45 |
+
st.header("Transcription")
|
46 |
+
st.write(full_transcript)
|