File size: 1,362 Bytes
0bf9df3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import streamlit as st
from transformers import AutoModelForCausalLM, LlamaTokenizer
@st.cache_resource
def load():
model = AutoModelForCausalLM.from_pretrained(
"stabilityai/japanese-stablelm-instruct-alpha-7b",
trust_remote_code=True,
)
tokenizer = LlamaTokenizer.from_pretrained(
"novelai/nerdstash-tokenizer-v1",
additional_special_tokens=['▁▁'],
)
return model, tokenizer
def generate():
pass
st.header(":dna: 遺伝カウンセリング対話AI")
st.sidebar.header("Options")
st.session_state["options"]["temperature"] = st.sidebar.slider("temperature", min_value=0.0, max_value=2.0, step=0.1, value=st.session_state["options"]["temperature"])
st.session_state["options"]["top_k"] = st.sidebar.slider("top_k", min_value=0, max_value=100, step=1, value=st.session_state["options"]["top_k"])
st.session_state["options"]["top_p"] = st.sidebar.slider("top_p", min_value=0.0, max_value=1.0, step=0.1, value=st.session_state["options"]["top_p"])
st.session_state["options"]["repetition_penalty"] = st.sidebar.slider("repetition_penalty", min_value=1.0, max_value=2.0, step=0.01, value=st.session_state["options"]["repetition_penalty"])
st.session_state["options"]["system_prompt"] = st.sidebar.text_area("System Prompt", value=st.session_state["options"]["system_prompt"])
model, tokenizer = load() |