sofzcc commited on
Commit
8cfa36b
·
verified ·
1 Parent(s): 94cc0ef

Upload 4 files

Browse files
Files changed (4) hide show
  1. Multimodal AI Chatbot with Youtube QA.pdf +0 -0
  2. README.md +80 -12
  3. app.py +967 -0
  4. requirements.txt +98 -0
Multimodal AI Chatbot with Youtube QA.pdf ADDED
Binary file (303 kB). View file
 
README.md CHANGED
@@ -1,12 +1,80 @@
1
- ---
2
- title: Multimodal Ai Chatbot Youtube Qa
3
- emoji: 🏆
4
- colorFrom: blue
5
- colorTo: yellow
6
- sdk: streamlit
7
- sdk_version: 1.37.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ![logo_ironhack_blue 7](https://user-images.githubusercontent.com/23629340/40541063-a07a0a8a-601a-11e8-91b5-2f13e4e6b441.png)
2
+
3
+ # Project III | Business Case: Building a Multimodal AI ChatBot for YouTube Video QA
4
+
5
+ Building a chatbot that can translate YouTube videos into text and allow for natural language querying offers several compelling business cases.
6
+
7
+ - Firstly, it improves accessibility for users with hearing impairments or those who prefer reading over watching videos, thereby broadening the audience reach and enhancing brand reputation.
8
+ - Secondly, it enables efficient indexing and searching of video content, allowing users to quickly find specific information within videos, which is particularly useful for educational content and tutorials.
9
+ - Thirdly, it improves customer support by leveraging existing video content to provide instant, accurate responses to customer queries, thus reducing support costs and improving response times.
10
+ - Additionally, it serves educational and training purposes by enhancing the learning experience, enabling easy querying and access to specific segments of instructional videos. From an SEO and content marketing perspective, video transcripts can significantly boost website traffic and video discoverability by improving search engine indexing. Lastly, supporting multiple languages allows the chatbot to cater to a global audience, expanding market reach and enhancing user engagement.
11
+
12
+ ### Project Overview
13
+
14
+ The goal of this final project is to develop a RAG system or AI bot that combines the power of text and audio processing to answer questions about YouTube videos. The bot will utilize natural language processing (NLP) techniques and speech recognition to analyze both textual and audio input, extract relevant information from YouTube videos, and provide accurate answers to user queries.
15
+
16
+ ### Key Objectives
17
+
18
+ 1. Develop a text-based question answering (QA) model using pre-trained language models. You may find it useful to fine-tune your model.
19
+ 2. Integrate speech recognition capabilities to convert audio/video input (user questions) into text transcripts.
20
+ 3. Build a conversational interface for users to interact with the bot via text or voice input. The latter is not a must.
21
+ 4. Retrieve, analyze, and store into a vector database (pinecone, chromabd...) YouTube video content to generate answers to user questions.
22
+ 5. Test and evaluate the bot's performance in accurately answering questions about YouTube videos.
23
+ 6. Your AI must use agents with several tools and memory.
24
+
25
+ ### Incorporating LangChain & LangSmith
26
+
27
+ To enhance the project with LangChain, you can utilize LangChain agents and functions for various tasks:
28
+
29
+ 1. **Text Preprocessing:**
30
+ - Use LangChain functions for tokenization, lemmatization, and other text preprocessing tasks as you see fit.
31
+
32
+ 2. **QA Model Development:**
33
+ - Utilize LangChain agents for fine-tuning pre-trained language models from HuggingFace or OpenAI for question answering tasks. If you use OpenAI api key provide by Ironhack, be mindful of the limited credits available for the entire class.
34
+
35
+ 3. **Speech Recognition Integration:**
36
+ - Incorporate LangChain agents for integrating speech recognition capabilities into the bot, allowing it to process audio and/or text inputs.
37
+
38
+ 4. **Conversational Interface:**
39
+ - Design conversational flows using LangChain agents to handle user interactions and route queries to the appropriate processing modules.
40
+
41
+ 5. **YouTube Video Retrieval:**
42
+ - Develop LangChain agents for accessing YouTube video content and extracting relevant metadata for analysis.
43
+
44
+ 6. **Make use of a vector database of your choice**
45
+
46
+ 7. **Make use of LangSmith platform for testing, evaluation, and deployment of your AI**
47
+
48
+ ### Deliverables
49
+
50
+ 1. Source code for the multimodal bot implementation, including LangChain integration.
51
+ 2. Documentation detailing the project architecture, methodology, and LangChain usage.
52
+ 3. Presentation slides summarizing the project objectives, process, and results.
53
+ 4. This must be deployed as a web/mobile app.
54
+
55
+ ### Project Timeline
56
+
57
+ - Day 1-2: Project kickoff, data collection, and text preprocessing using LangChain functions.
58
+ - Day 3-4: QA model development with LangChain agents and speech recognition integration.
59
+ - Day 5-6: Conversational interface development with LangChain agents and YouTube video retrieval.
60
+ - Day 7: Testing, evaluation, documentation, and presentation preparation.
61
+
62
+ ## Resources
63
+
64
+ Below are some useful resources, but you don't have to use them.
65
+
66
+ - [YouTube](https://pypi.org/project/youtube-transcript-api/) Python [module](https://pypi.org/project/yt-dlp/2021.3.7/).
67
+ - [Whisper LLM](https://huggingface.co/openai/whisper-large-v3)
68
+ - Pre-trained language models available in libraries like [HuggingFace](https://huggingface.co/) Transformers.
69
+ - [LangChain](https://python.langchain.com/v0.1/docs/get_started/quickstart/) for text preprocessing, model development, and conversational interface design.
70
+ - [LangSmith](https://www.langchain.com/langsmith) for testing, performance checks, and [deploying](https://langchain-ai.github.io/langgraph/cloud/quick_start/#test-the-graph-build-locally) your model and app.
71
+
72
+ ## Evaluation Criteria
73
+
74
+ - Accuracy of the bot in answering user questions about YouTube videos.
75
+ - Usability and responsiveness of the conversational interface (latency).
76
+ - Documentation quality and clarity of presentation slides.
77
+
78
+ ## Conclusion
79
+
80
+ This final project offers an exciting opportunity to explore the intersection of NLP, speech recognition, and multimedia analysis in building a multimodal bot for YouTube video QA. By leveraging state-of-the-art techniques and technologies, including LangChain, you will gain valuable hands-on experience in developing innovative AI applications with real-world impact. You may find it to focus on my topic like health, nutrition, astrophysics...but this is an open ended project in some ways. So, feel free to build something you will be proud of. If you have other source of data other than YouTube you are free to use it.
app.py ADDED
@@ -0,0 +1,967 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import time
3
+ import streamlit as st
4
+ from youtube_transcript_api import YouTubeTranscriptApi
5
+ from youtube_search import YoutubeSearch
6
+ from fpdf import FPDF
7
+ from langchain_openai import ChatOpenAI
8
+ from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
9
+ from sentence_transformers import SentenceTransformer
10
+ from langchain.chains import RetrievalQA
11
+ from langchain.prompts import PromptTemplate
12
+ from langchain.memory import ConversationBufferWindowMemory
13
+ from langchain_community.vectorstores import Chroma
14
+ import chromadb
15
+ from langchain_core.documents import Document
16
+ from pypdf import PdfReader
17
+ from langchain_community.document_loaders import PyPDFLoader
18
+ from langchain.agents import initialize_agent, Tool
19
+ from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
20
+ from langchain.agents import Tool, AgentExecutor, create_react_agent, tool
21
+ from flask import Flask, request, jsonify
22
+ import sqlite3
23
+ import re
24
+ import textwrap
25
+ from langchain.chains.summarize import load_summarize_chain
26
+ from langchain_community.document_loaders import WebBaseLoader
27
+ from langchain.chains import MapReduceDocumentsChain, ReduceDocumentsChain, StuffDocumentsChain
28
+ from langchain.chains.llm import LLMChain
29
+ import torch
30
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
31
+ import nltk
32
+ from nltk.tokenize import word_tokenize
33
+ import pytube
34
+ from moviepy.editor import *
35
+
36
+ # Download necessary resources
37
+ nltk.download('punkt')
38
+
39
+
40
+
41
+ # Initialize environment variables
42
+ from dotenv import load_dotenv
43
+ import traceback
44
+ import logging
45
+
46
+ load_dotenv()
47
+
48
+ OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
49
+ HUGGINGFACEHUB_API_TOKEN = os.getenv('HF_TOKEN')
50
+ YT_API_KEY = os.getenv('YT_API_KEY')
51
+
52
+ LANGCHAIN_TRACING_V2='true'
53
+ LANGCHAIN_ENDPOINT="https://api.smith.langchain.com"
54
+ LANGCHAIN_API_KEY = os.getenv('LANGCHAIN_API_KEY')
55
+ LANGCHAIN_PROJECT="default"
56
+
57
+ # Download and initialize all required models
58
+ model = SentenceTransformerEmbeddings(model_name='paraphrase-MiniLM-L6-v2')
59
+ summarization_model_name = "suriya7/bart-finetuned-text-summarization"
60
+ summarization_model = AutoModelForSeq2SeqLM.from_pretrained(summarization_model_name)
61
+ summarization_tokenizer = AutoTokenizer.from_pretrained(summarization_model_name)
62
+
63
+
64
+ # Function to load the vector database
65
+ def load_vectordb():
66
+ """
67
+ Load the vector database from Chroma.
68
+
69
+ Returns:
70
+ langchain_chroma (Chroma): The Chroma vector database.
71
+ """
72
+ persistent_client = chromadb.PersistentClient("chromadb")
73
+
74
+ langchain_chroma = Chroma(
75
+ client=persistent_client,
76
+ collection_name="knowledge_base",
77
+ embedding_function=model,
78
+ )
79
+
80
+ return langchain_chroma
81
+
82
+ vector_db = load_vectordb()
83
+
84
+ # Set up logging
85
+ logging.basicConfig(level=logging.INFO)
86
+ logger = logging.getLogger(__name__)
87
+
88
+ def safe_execute(func, *args, **kwargs):
89
+ """
90
+ Execute a function safely, catching any exceptions and logging errors.
91
+
92
+ Args:
93
+ func (callable): The function to execute.
94
+ *args: Variable length argument list for the function.
95
+ **kwargs: Arbitrary keyword arguments for the function.
96
+
97
+ Returns:
98
+ The result of the function execution, or an error message if an exception occurs.
99
+ """
100
+ try:
101
+ return func(*args, **kwargs)
102
+ except Exception as e:
103
+ logger.error(f"Error in {func.__name__}: {str(e)}")
104
+ logger.error(traceback.format_exc())
105
+ return f"An error occurred: {str(e)}"
106
+
107
+
108
+ # Initialize LLM
109
+ llm = ChatOpenAI(temperature=0.6, model_name="gpt-3.5-turbo-16k")
110
+
111
+
112
+ def count_tokens(text):
113
+ """
114
+ Count the number of tokens in a given text using NLTK's word tokenizer.
115
+
116
+ Args:
117
+ text (str): The input text.
118
+
119
+ Returns:
120
+ int: The number of tokens in the text.
121
+ """
122
+ tokens = word_tokenize(text)
123
+ return len(tokens)
124
+
125
+ def text_summarize(text):
126
+ """
127
+ Summarize the input text using a MapReduce approach.
128
+
129
+ Args:
130
+ text (str): The input text to summarize.
131
+
132
+ Returns:
133
+ str: The summary of the input text.
134
+ """
135
+ # Split the text into chunks
136
+ text_splitter = CharacterTextSplitter(chunk_size=10000, chunk_overlap=200)
137
+
138
+ docs = [Document(page_content=chunk) for chunk in text_splitter.split_text(text)]
139
+
140
+ # Map step
141
+ map_template = """The following is a document:
142
+ {docs}
143
+ Based on this document, please identify the main themes and key points.
144
+ Helpful Answer:"""
145
+ map_prompt = PromptTemplate.from_template(map_template)
146
+ map_chain = LLMChain(llm=llm, prompt=map_prompt)
147
+
148
+ # Reduce step
149
+ reduce_template = """The following is a set of summaries:
150
+ {docs}
151
+ Take these and distill them into a final, consolidated summary of the main themes and key points.
152
+ Helpful Answer:"""
153
+ reduce_prompt = PromptTemplate.from_template(reduce_template)
154
+ reduce_chain = LLMChain(llm=llm, prompt=reduce_prompt)
155
+
156
+ # Combine
157
+ combine_documents_chain = StuffDocumentsChain(
158
+ llm_chain=reduce_chain,
159
+ document_variable_name="docs"
160
+ )
161
+
162
+ # Create the MapReduceDocumentsChain
163
+ map_reduce_chain = MapReduceDocumentsChain(
164
+ llm_chain=map_chain,
165
+ reduce_documents_chain=combine_documents_chain,
166
+ document_variable_name="docs"
167
+ )
168
+
169
+ return map_reduce_chain.run(docs)
170
+
171
+
172
+ # Function to add documents to the database
173
+ def add_documents_to_db(pdf_file):
174
+ """
175
+ Add documents extracted from a PDF file to the vector database.
176
+
177
+ Args:
178
+ pdf_file (str): The path to the PDF file to process.
179
+ """
180
+ try:
181
+ texts = extract_text_from_pdf(pdf_file)
182
+ cleaned_text = clean_text(texts)
183
+ documents = get_text_chunks(cleaned_text)
184
+
185
+ if documents:
186
+ h_size = 10000
187
+ total_documents = len(documents)
188
+ processed_documents = 0
189
+
190
+ while processed_documents < total_documents:
191
+ remaining_documents = total_documents - processed_documents
192
+ current_h_size = min(h_size, remaining_documents)
193
+
194
+ h_documents = documents[processed_documents:processed_documents + current_h_size]
195
+ vector_db.add_documents(h_documents)
196
+
197
+ processed_documents += current_h_size
198
+
199
+ print(f"Processed {processed_documents} out of {total_documents} documents.")
200
+
201
+ print("All documents added to the collection.")
202
+ else:
203
+ logger.warning(f"No documents found in {pdf_file}.")
204
+ except Exception as e:
205
+ logger.error(f"Error adding documents to database from {pdf_file}: {str(e)}")
206
+ raise # Re-raise the exception for visibility
207
+
208
+
209
+ def generate_valid_filename(query):
210
+ """
211
+ Generate a valid filename by replacing invalid characters with underscores.
212
+
213
+ Args:
214
+ query (str): The input string to generate the filename from.
215
+
216
+ Returns:
217
+ str: The generated valid filename.
218
+ """
219
+ valid_chars = '-_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'
220
+ filename = ''.join(c if c in valid_chars else '_' for c in query)
221
+ return filename
222
+
223
+ #################################################
224
+ ## NEW FUNCTIONS ##
225
+ #################################################
226
+ import whisper
227
+ import time
228
+ from pytube import YouTube
229
+
230
+
231
+ def download_video(url):
232
+ video = YouTube(url)
233
+ stream = video.streams.filter(file_extension='mp4')
234
+ stream.download()
235
+ return stream.default_filename
236
+
237
+
238
+ def video_to_text(filename):
239
+ clip = VideoFileClip(filename)
240
+ audio_filename = filename[:-4] + ".mp3"
241
+ clip.audio.write_audiofile(audio_filename)
242
+ clip.close()
243
+ time.sleep(5)
244
+
245
+ model = whisper.load_model("base")
246
+ result = model.transcribe(audio_filename)
247
+
248
+ transcription = result["text"]
249
+
250
+ return transcription
251
+
252
+
253
+ #################################################
254
+ # Function to search and transcribe YouTube videos
255
+ def search_and_transcribe_videos(query, max_results=20, min_valid_videos=4):
256
+ """
257
+ Search for YouTube videos and transcribe them.
258
+
259
+ Args:
260
+ query (str): The search query for YouTube videos.
261
+ max_results (int): The maximum number of results to fetch. Default is 20.
262
+ min_valid_videos (int): The minimum number of valid videos to transcribe. Default is 4.
263
+
264
+ Returns:
265
+ str: The path to the transcript file.
266
+ """
267
+ valid_urls = []
268
+ current_max_results = max_results
269
+ transcription = ''
270
+ while len(valid_urls) < min_valid_videos and current_max_results <= 20:
271
+ results = YoutubeSearch(query, max_results=current_max_results).to_dict()
272
+ filtered_results = [video for video in results if video.get('liveBroadcastContent') != 'live']
273
+ for video in filtered_results:
274
+ video_id = video['id']
275
+ video_link = f"https://www.youtube.com/watch?v={video_id}"
276
+ try:
277
+ transcription = YouTubeTranscriptApi.get_transcript(video_id, languages=['en', 'en-US'])
278
+ transcript_text = " ".join([line['text'] for line in transcription])
279
+ valid_urls.append((transcript_text))
280
+
281
+ except:
282
+ continue
283
+
284
+ if len(valid_urls) >= min_valid_videos:
285
+ break
286
+
287
+ current_max_results += max_results
288
+
289
+ transcript_file = generate_valid_filename(query) + '.txt'
290
+ with open(transcript_file, 'a', encoding='utf-8') as f:
291
+ for text in valid_urls[:min_valid_videos]:
292
+ f.write(f"Text:{text}\n\n")
293
+
294
+ return transcript_file
295
+
296
+ # Function to create a PDF from a transcript
297
+ def create_pdf(input_file):
298
+ """
299
+ Create a PDF file from a transcript file.
300
+
301
+ Args:
302
+ input_file (str): The path to the transcript file.
303
+
304
+ Returns:
305
+ str: The path to the created PDF file.
306
+ """
307
+ pdf = FPDF()
308
+ with open(input_file, 'r', encoding='utf-8') as f:
309
+ text = f.read()
310
+ pdf.add_page()
311
+ pdf.set_font('Arial', size=12)
312
+ pdf.multi_cell(0, 10, text.encode('latin-1', 'replace').decode('latin-1'))
313
+ filename = input_file.split('.txt')[0]
314
+ output_filename = f"{filename}.pdf"
315
+ pdf.output(output_filename)
316
+ return output_filename
317
+
318
+ # Function to extract text from a PDF
319
+ def extract_text_from_pdf(pdf_path):
320
+ """
321
+ Extract text from a PDF file.
322
+
323
+ Args:
324
+ pdf_path (str): The path to the PDF file.
325
+
326
+ Returns:
327
+ str: The extracted text.
328
+ """
329
+ reader = PdfReader(pdf_path)
330
+ text = ""
331
+ for page in reader.pages:
332
+ page_text = page.extract_text()
333
+ if page_text:
334
+ text += page_text
335
+ return text
336
+
337
+ # Function to clean extracted text
338
+ def clean_text(text):
339
+ """
340
+ Clean and preprocess the extracted text.
341
+
342
+ Args:
343
+ text (str): The extracted text.
344
+
345
+ Returns:
346
+ str: The cleaned text.
347
+ """
348
+
349
+ text = text.replace('\xa0', ' ')
350
+ text = re.sub(r'[^\x00-\x7F]+!?', ' ', text)
351
+ return text
352
+
353
+ # Function to split text into chunks
354
+ def get_text_chunks(text):
355
+ """
356
+ Split the cleaned text into manageable chunks for further processing.
357
+
358
+ Args:
359
+ text (str): The cleaned text.
360
+ chunk_size (int): The size of each text chunk.
361
+
362
+ Returns:
363
+ list of Document: List of Document objects containing text chunks.
364
+ """
365
+
366
+ text_splitter = RecursiveCharacterTextSplitter(
367
+ chunk_size=1000,
368
+ chunk_overlap=200,
369
+ length_function=len
370
+ )
371
+ chunks = text_splitter.split_text(text)
372
+ return [Document(page_content=chunk) for chunk in chunks]
373
+
374
+
375
+
376
+ # Function to process YouTube videos
377
+ def load_video(url):
378
+ """
379
+ Retrieve the transcript of a YouTube video, save it to a text file,
380
+ convert the text file to a PDF, and return the PDF filename.
381
+
382
+ Args:
383
+ url (str): The URL of the YouTube video.
384
+
385
+ Returns:
386
+ str: The filename of the generated PDF.
387
+ """
388
+ video_id = url.split('v=')[-1]
389
+ transcript = YouTubeTranscriptApi.get_transcript(video_id)
390
+ transcript_text = ' '.join([t['text'] for t in transcript])
391
+ filename = f"{video_id}.txt"
392
+ with open(filename, 'w', encoding='utf-8') as f:
393
+ f.write(transcript_text)
394
+ pdf_filename = create_pdf(filename)
395
+ return pdf_filename
396
+
397
+ #Initialize the collection
398
+ def initialize_collection():
399
+ """
400
+ Initialize the knowledge base by searching and transcribing YouTube videos
401
+ for a predefined set of queries, converting them to PDF, and adding them
402
+ to the vector database.
403
+
404
+ Returns:
405
+ bool: True if the initialization is successful.
406
+ """
407
+ # Update queries if you want the assistant to have a different knowledge base and uncomment initialize_collection() after this function
408
+
409
+ queries = [
410
+ "Transfer Learning in Machine Learning",
411
+ "Object Detection and Recognition in Computer Vision",
412
+ "Sentiment Analysis in Natural Language Processing",
413
+ "Generative Adversarial Networks (GANs) in Deep Learning",
414
+ "Automatic Speech Recognition (ASR) Systems",
415
+ "Reinforcement Learning Applications",
416
+ "Image Segmentation Techniques in Computer Vision",
417
+ "Text Summarization Methods in NLP",
418
+ "Convolutional Neural Networks (CNNs) for Image Classification",
419
+ "Speech Synthesis and Text-to-Speech (TTS) Systems",
420
+ "Anomaly Detection in Machine Learning",
421
+ "Facial Recognition Technology and Ethics",
422
+ "Machine Translation and Language Models",
423
+ "Recurrent Neural Networks (RNNs) for Sequence Data",
424
+ "Speaker Diarization and Identification in Speech Processing",
425
+ "Applications of Natural Language Understanding (NLU)",
426
+ "Deep Reinforcement Learning for Game AI",
427
+ "Semantic Segmentation in Computer Vision",
428
+ "Dialogue Systems and Conversational AI",
429
+ "Ethical Implications of AI in Healthcare",
430
+ "Neural Machine Translation (NMT)",
431
+ "Time Series Forecasting with Machine Learning",
432
+ "Multi-modal Learning and Fusion",
433
+ "Named Entity Recognition (NER) in NLP",
434
+ "Human Pose Estimation in Computer Vision",
435
+ "Language Generation Models",
436
+ "Cognitive Robotics and AI Integration",
437
+ "Visual Question Answering (VQA) Systems",
438
+ "Privacy and Security in AI Applications",
439
+ "Graph Neural Networks (GNNs) for Structured Data",
440
+ "Introduction to Python programming",
441
+ "Python data types and variables",
442
+ "Control flow and loops in Python",
443
+ "Functions and modules in Python",
444
+ "File handling in Python",
445
+ "Object-oriented programming (OOP) in Python",
446
+ "Error handling and exceptions in Python",
447
+ "Python libraries for data analysis (e.g., Pandas, NumPy)",
448
+ "Web scraping with Python (e.g., using BeautifulSoup)",
449
+ "Creating GUI applications in Python (e.g., using Tkinter)",
450
+ "History of Formula 1 racing",
451
+ "Formula 1 car specifications and regulations",
452
+ "Famous Formula 1 drivers and their achievements",
453
+ "Formula 1 circuits around the world",
454
+ "How Formula 1 teams operate and strategize",
455
+ "Technological innovations in Formula 1",
456
+ "Role of aerodynamics in Formula 1 cars",
457
+ "Formula 1 race formats (qualifying, practice sessions, race day)",
458
+ "Evolution of safety measures in Formula 1",
459
+ "Economic impact of Formula 1 on host countries",
460
+ "Formula 1 engine specifications and development",
461
+ "Famous rivalries in Formula 1 history",
462
+ "Formula 1 team dynamics and hierarchy",
463
+ "How Formula 1 impacts automotive technology",
464
+ "The role of tire management in Formula 1 races",
465
+ "Key differences between Formula 1 and other racing series",
466
+ "The influence of sponsors in Formula 1",
467
+ "Formula 1 rules and regulations changes over the years",
468
+ "Notable controversies in Formula 1",
469
+ "The future of Formula 1 racing"
470
+ ]
471
+ print(len(queries))
472
+ for query in queries:
473
+ print(query)
474
+ transcript_file = search_and_transcribe_videos(query)
475
+ print(transcript_file)
476
+ time.sleep(5)
477
+
478
+ pdf_filename = create_pdf(transcript_file)
479
+ time.sleep(10)
480
+
481
+ add_documents_to_db(pdf_filename)
482
+
483
+ return True
484
+
485
+ import tiktoken
486
+
487
+ def update_conversation_summary(summarized_conversation, new_interaction):
488
+ """
489
+ Update the summary of a conversation by appending a new interaction.
490
+
491
+ Args:
492
+ summarized_conversation (str): The current summarized conversation.
493
+ new_interaction (dict): A dictionary containing 'question' and 'answer' keys.
494
+
495
+ Returns:
496
+ str: The updated summary of the conversation.
497
+ """
498
+
499
+ new_summary = f"{summarized_conversation}\n- Q: {new_interaction['question']}\n A: {new_interaction['answer']}"
500
+
501
+ return new_summary
502
+
503
+
504
+ def is_long_task(task, max_tokens=1000):
505
+ """
506
+ Determine if a given task exceeds the specified token limit.
507
+
508
+ Args:
509
+ task (str): The task to check.
510
+ max_tokens (int): The maximum number of tokens allowed.
511
+
512
+ Returns:
513
+ bool: True if the task exceeds the token limit, False otherwise.
514
+ """
515
+
516
+ encoding = tiktoken.encoding_for_model(llm)
517
+ num_tokens = len(encoding.encode(task))
518
+ return num_tokens > max_tokens
519
+
520
+ def split_task(task):
521
+ """
522
+ Split a long task into smaller subtasks for easier processing.
523
+
524
+ Args:
525
+ task (str): The task to split.
526
+
527
+ Returns:
528
+ list of str: A list of subtasks.
529
+ """
530
+
531
+ prompt = f"""
532
+ The following task needs to be split into smaller subtasks:
533
+
534
+ {task}
535
+
536
+ Please divide this task into 2-4 subtasks. Each subtask should be a complete, standalone task.
537
+ Format your response as a Python list of strings, with each string being a subtask.
538
+ """
539
+
540
+ response = llm.invoke(prompt)
541
+ subtasks = eval(response)
542
+ return subtasks
543
+
544
+ def combine_results(results):
545
+ """
546
+ Combine the results from multiple subtasks into a single summary.
547
+
548
+ Args:
549
+ results (list of str): The results from subtasks.
550
+
551
+ Returns:
552
+ str: A concise summary of the combined results.
553
+ """
554
+
555
+ combined = "Combined results from subtasks:\n\n"
556
+ for i, result in enumerate(results, 1):
557
+ combined += f"Subtask {i} result:\n{result}\n\n"
558
+
559
+ summary_prompt = f"""
560
+ Please provide a concise summary of the following combined results:
561
+
562
+ {combined}
563
+
564
+ Summarize the key points and overall conclusion.
565
+ """
566
+
567
+ response = llm.invoke(summary_prompt)
568
+ return response
569
+
570
+
571
+
572
+ def process_user_input(user_input):
573
+ """
574
+ Process user input by determining if it's a long task. If so, split it into subtasks,
575
+ process each subtask, and combine the results. Otherwise, process the input directly.
576
+
577
+ Args:
578
+ user_input (str): The user's input to process.
579
+
580
+ Returns:
581
+ str: The result after processing the user input.
582
+ """
583
+
584
+ if is_long_task(user_input):
585
+ subtasks = split_task(user_input)
586
+ results = []
587
+ for subtask in subtasks:
588
+ result = run_agent(subtask)
589
+ results.append(result)
590
+ return combine_results(results)
591
+ else:
592
+ return run_agent(user_input)
593
+
594
+ # Uncomment the line below if you want to re-initialize the collection or initialize it with different topics
595
+ #initialize_collection()
596
+
597
+ def create_qa_chain():
598
+ """
599
+ Create a question-answering chain using a retriever and a language model.
600
+
601
+ Returns:
602
+ RetrievalQA: The question-answering chain instance.
603
+ """
604
+
605
+ retriever = vector_db.as_retriever()
606
+ qa_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)
607
+ return qa_chain
608
+
609
+ def combine_summaries(summaries):
610
+ """
611
+ Combine multiple summaries into a single summary.
612
+
613
+ Args:
614
+ summaries (list of str): The list of summaries to combine.
615
+
616
+ Returns:
617
+ str: The combined summary.
618
+ """
619
+
620
+ combined_summary = " ".join(summaries)
621
+ return combined_summary
622
+
623
+ def split_text(text, max_length=1500):
624
+ """
625
+ Split a long text into smaller chunks, ensuring chunks do not exceed the specified length.
626
+
627
+ Args:
628
+ text (str): The text to split.
629
+ max_length (int): The maximum length of each chunk.
630
+
631
+ Returns:
632
+ list of str: A list of text chunks.
633
+ """
634
+
635
+ chunks = []
636
+ while len(text) > max_length:
637
+ chunk = text[:max_length]
638
+ # Find the last complete sentence within the chunk
639
+ last_period = chunk.rfind('. ')
640
+ if last_period != -1:
641
+ chunk = chunk[:last_period+1]
642
+ chunks.append(chunk)
643
+ text = text[len(chunk):].lstrip()
644
+ if text:
645
+ chunks.append(text)
646
+ return chunks
647
+
648
+ def process_large_text(transcript_text):
649
+ """
650
+ Process a large text by splitting it into chunks, summarizing each chunk,
651
+ and then generating a final summary from the combined chunk summaries.
652
+
653
+ Args:
654
+ transcript_text (str): The large text to process.
655
+
656
+ Returns:
657
+ str: The final summary of the large text.
658
+ """
659
+
660
+ # Step 1: Split the cleaned text into manageable chunks
661
+ chunks = split_text(transcript_text, max_length=1500)
662
+
663
+ # Step 2: Generate summaries for each chunk
664
+ chunk_summaries = [text_summarize(chunk) for chunk in chunks]
665
+
666
+ # Step 3: Combine the chunk summaries
667
+ combined_summary = combine_summaries(chunk_summaries)
668
+
669
+ # Step 4: Generate the final summary from combined summaries
670
+ final_summ = text_summarize(combined_summary)
671
+
672
+ return final_summ
673
+
674
+ # Initialize memory with k=5, so the memory object will store the most recent 5 messages or interactions in the conversation
675
+ memory = ConversationBufferWindowMemory(k=5)
676
+
677
+ # Define agent tools
678
+ @tool
679
+ def search_kb(query):
680
+ """
681
+ Search the knowledge base for relevant documents based on a query and return a response.
682
+
683
+ Args:
684
+ query (str): The search query.
685
+
686
+ Returns:
687
+ str: The result from the QA chain based on the retrieved documents.
688
+ """
689
+
690
+ retriever = vector_db.as_retriever()
691
+ docs = retriever.get_relevant_documents(query)
692
+ summaries = "\n\n".join([doc.page_content for doc in docs])
693
+ qa_chain = create_qa_chain()
694
+ llm_response = qa_chain({"query": query})
695
+ return llm_response["result"]
696
+
697
+ @tool
698
+ def process_video(url):
699
+ """
700
+ Processes a YouTube video by extracting its transcript, summarizing it,
701
+ and adding the transcript to the knowledge base.
702
+
703
+ Args:
704
+ url (str): The URL of the YouTube video to process.
705
+
706
+ Returns:
707
+ str: The summary of the video.
708
+ """
709
+ # video_id = url.split('v=')[-1]
710
+ # transcript = YouTubeTranscriptApi.get_transcript(video_id)
711
+ # transcript_text = ' '.join([t['text'] for t in transcript])
712
+
713
+ video = download_video(url)
714
+ transcript_text = video_to_text(video)
715
+
716
+ # Clean the transcript text
717
+ cleaned_text = clean_text(transcript_text)
718
+ if len(cleaned_text) > 15000:
719
+ process_large_text(cleaned_text)
720
+
721
+ # Generate a summary for the user
722
+ summary = text_summarize(cleaned_text)
723
+
724
+ print(f"Added {len(summary)} chunks from YouTube video {url} to the collection.")
725
+ return summary
726
+
727
+
728
+ @tool
729
+ def new_search(query):
730
+ """
731
+ Perform a new search on YouTube, transcribe videos, create a PDF from the transcript, add documents to the database, and search the knowledge base.
732
+
733
+ Args:
734
+ query (str): The search query.
735
+
736
+ Returns:
737
+ str: The path to the created PDF file.
738
+ """
739
+ transcript = search_and_transcribe_videos(query)
740
+ time.sleep(10)
741
+ pdf_file = create_pdf(transcript)
742
+ time.sleep(10)
743
+ add_documents_to_db(pdf_file)
744
+ time.sleep(5)
745
+ search_kb(query)
746
+ return pdf_file
747
+
748
+ @tool
749
+ def process_pdf(pdf):
750
+ """
751
+ Processes a PDF File by summarizing it,
752
+ and adding it to the knowledge base.
753
+
754
+ Args:
755
+ pdf (str): The path to the PDF file to process.
756
+
757
+ Returns:
758
+ str: The summary of the PDF.
759
+ """
760
+
761
+ loader = PyPDFLoader(pdf)
762
+ docs = loader.load_and_split()
763
+ chain = load_summarize_chain(llm, chain_type="map_reduce")
764
+ summary = chain.run(docs)
765
+
766
+ return summary
767
+
768
+
769
+
770
+ # Define the agent tools
771
+ tools = [
772
+ Tool(
773
+ name="Search KB",
774
+ func=search_kb,
775
+ description="useful for when you need to answer questions about Machine Learning, Computer Vision and Natural Language Processing. The input to this tool should be a complete english sentence.",
776
+ ),
777
+ Tool(
778
+ name="Search YouTube",
779
+ func=new_search,
780
+ description="useful for when the user asks you a question outside of Machine Learning, Computer Vision and Natural Language Processing. You use it to find new information about a topic not in the knowledge base. The input to this tool should be a complete english sentence.",
781
+ ),
782
+ Tool(
783
+ name="Process Video",
784
+ func=process_video,
785
+ description="Useful for when the user wants to summarize or ask questions about a specific YouTube video. The input to this tool should be a YouTube URL.",
786
+ ),
787
+ Tool(
788
+ name="Process PDF",
789
+ func=process_pdf,
790
+ description="Useful for when the user wants to summarize or ask questions about a specific PDF file. The input to this tool should be a PDF file path.",
791
+ )
792
+ ]
793
+
794
+
795
+
796
+ # Define the agent prompt
797
+ prompt_template_string = """
798
+ You are an AI trained on Artificial Intelligence topics and Formula 1.
799
+
800
+
801
+ Answer the following questions as best you can, taking into account the context of the conversation.
802
+ You have access to the following tools:
803
+
804
+ {tools}
805
+
806
+ Use the following format:
807
+
808
+ Question: the input question you must answer
809
+ Thought: you should always think about what to do
810
+ Action: the action you should take, should be one of [{tool_names}]
811
+ Action Input: the input to the action
812
+ Observation: the result of the action
813
+ ... (this Thought/Action/Action Input/Observation can repeat N times)
814
+ Thought: I now know the final answer
815
+ Final Answer: the final answer to the original input question
816
+
817
+
818
+ Example 1:
819
+ Question: What are dinosaurs?
820
+ Thought: I need to check the knowledge base for information on dinosaurs.
821
+ Action: Search Knowledge Base
822
+ Action Input: What are dinosaurs?
823
+ Observation: I don't have information on dinosaurs based on the provided context about machine learning and artificial intelligence.
824
+ Thought: I need to find new information about dinosaurs.
825
+ Action: Search YouTube
826
+ Action Input: Dinosaurs
827
+ Observation: Found relevant information and updated the knowledge base.
828
+ Thought: Now I can find information in the updated knowledge base.
829
+ Action: Search Knowledge Base
830
+ Action Input: What are dinosaurs?
831
+ Observation: [detailed information about dinosaurs]
832
+ Thought: I now know the final answer.
833
+ Final Answer: [final detailed answer about dinosaurs]
834
+
835
+ Example 2:
836
+ Question: Can you summarize this video? https://www.youtube.com/watch?v=dQw4w9WgXcQ
837
+ Thought: I need to extract the link to the video to get the summary.
838
+ Action: Process input to get link
839
+ Action Input: https://www.youtube.com/watch?v=dQw4w9WgXcQ
840
+ Observation: [summary of the video]
841
+ Thought: Now I can provide the summary of the video.
842
+ Final Answer: [summary of the video]
843
+
844
+ Example 3:
845
+ Question: Explain the content of this video https://www.youtube.com/watch?v=dQw4w9WgXcQ and how it relates to machine learning.
846
+ Thought: I need to extract the YouTube link from the input.
847
+ Action: Extract YouTube Link
848
+ Action Input: Explain the content of this video https://www.youtube.com/watch?v=dQw4w9WgXcQ and how it relates to machine learning.
849
+ Observation: Extracted YouTube link: https://www.youtube.com/watch?v=dQw4w9WgXcQ
850
+ Thought: I need to process the video to get the summary.
851
+ Action: Process Video
852
+ Action Input: https://www.youtube.com/watch?v=dQw4w9WgXcQ
853
+ Observation: [summary of the video]
854
+ Thought: Now I can relate the content to machine learning.
855
+ Final Answer: [explanation of how the video content relates to machine learning]
856
+
857
+ Example 4:
858
+ Question: Who are you?
859
+ Thought: I should explain that I'm a chatbot and how I can help.
860
+ Final Answer: I am a chatbot that can answer questions about machine learning and other related topics.
861
+
862
+ Example 5:
863
+ Question: What is your name?
864
+ Thought: I don't know.
865
+ Final Answer: I don't know the answer for that.
866
+
867
+ Question: {input}
868
+ {agent_scratchpad}"""
869
+
870
+ # Define the agent
871
+ prompt = PromptTemplate.from_template(prompt_template_string)
872
+
873
+
874
+ agent = create_react_agent(llm, tools, prompt)
875
+ agent_executor = AgentExecutor(agent=agent, tools=tools,handle_parsing_errors=True)
876
+
877
+
878
+
879
+ # Streamlit App Interface Design
880
+ def main():
881
+
882
+ # Initialize session state
883
+ if 'messages' not in st.session_state:
884
+ st.session_state.messages = []
885
+ if 'chat_history' not in st.session_state:
886
+ st.session_state.chat_history = []
887
+ if 'conversation_summary' not in st.session_state:
888
+ st.session_state.conversation_summary = ""
889
+
890
+ # Function to clear chat history
891
+ def clear_chat():
892
+ st.session_state.messages = []
893
+
894
+ st.title("AI Knowledge Base & Chat")
895
+
896
+ # Fixed description at the top
897
+ st.markdown("""
898
+ **Welcome to the AI Knowledge Base & Chat App!** 🤖💬
899
+
900
+ This interactive application leverages a sophisticated AI model to provide in-depth information and insights across a diverse range of topics. Here’s what you can explore:
901
+
902
+ - **Artificial Intelligence and Machine Learning** 🌐
903
+ - **Computer Vision** 👁️
904
+ - **Python Programming** 🐍
905
+ - **Formula 1 Racing** 🏎️
906
+
907
+ With its extensive training on these topics, the AI is well-equipped to provide accurate, detailed, and relevant answers to your questions. Enjoy exploring a world of knowledge and get instant responses to your queries! 🎓✨
908
+ In addition to answering your questions, you can:
909
+
910
+ Upload a PDF File 📄: Submit a PDF document to have it automatically summarized, giving you a concise overview of its contents without having to read through the entire file.
911
+
912
+ Provide a YouTube URL 🎥: Enter a link to a YouTube video to receive a summary of its key points, allowing you to grasp the main ideas quickly.
913
+ """)
914
+
915
+ # Layout for additional inputs and chat
916
+ with st.sidebar:
917
+ st.header("Additional Inputs")
918
+
919
+ youtube_url = st.text_input("Enter YouTube URL:")
920
+ if st.button("Process YouTube Video"):
921
+ with st.spinner("Processing YouTube video..."):
922
+ summary = process_video(youtube_url)
923
+ st.write(summary)
924
+ st.session_state.messages.append({"role": "assistant", "content": f"I've processed the YouTube video. Here's a summary:\n\n{summary}"})
925
+ st.experimental_rerun()
926
+
927
+ uploaded_pdf = st.file_uploader("Upload a PDF file", type="pdf")
928
+ if st.button("Process PDF"):
929
+ with st.spinner("Processing PDF..."):
930
+ texts = extract_text_from_pdf(uploaded_pdf)
931
+ pdf_summary = text_summarize(texts)
932
+ st.write(pdf_summary)
933
+ st.session_state.messages.append({"role": "assistant", "content": f"PDF processed and added to knowledge base. Here's a summary:\n\n{pdf_summary}"})
934
+ st.experimental_rerun()
935
+
936
+ st.header("Chat")
937
+
938
+ # Display chat history
939
+ for message in st.session_state.messages:
940
+ role = message["role"]
941
+ content = message["content"]
942
+ if role == "user":
943
+ with st.chat_message(role):
944
+ st.markdown(content)
945
+ else:
946
+ with st.chat_message(role):
947
+ st.markdown(content)
948
+
949
+ user_input = st.chat_input("Ask a question")
950
+
951
+ # Button to clear chat
952
+ if st.button('Clear Chat'):
953
+ clear_chat()
954
+
955
+ if user_input:
956
+ # Display user message
957
+ with st.chat_message("user"):
958
+ st.write(user_input)
959
+
960
+ # Get AI response
961
+ with st.chat_message("assistant"):
962
+ response = agent_executor.invoke({"input": user_input})
963
+ st.write(response['output'])
964
+ st.session_state.messages.append({"role": "assistant", "content": response['output']})
965
+
966
+ if __name__ == "__main__":
967
+ main()
requirements.txt ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ pysqlite3-binary
2
+ distro==1.9.0
3
+ dnspython==2.6.1
4
+ docarray==0.40.0
5
+ email_validator==2.2.0
6
+ fastapi==0.111.1
7
+ fastapi-cli==0.0.4
8
+ filelock==3.15.4
9
+ Flask==3.0.3
10
+ flatbuffers==24.3.25
11
+ fpdf==1.7.2
12
+ frozenlist==1.4.1
13
+ fsspec==2024.6.1
14
+ gitdb==4.0.11
15
+ GitPython==3.1.43
16
+ google-api-core==2.19.1
17
+ google-api-python-client==2.137.0
18
+ google-auth==2.32.0
19
+ google-auth-httplib2==0.2.0
20
+ googleapis-common-protos==1.63.2
21
+ huggingface-hub==0.23.4
22
+ humanfriendly==10.0
23
+ idna==3.7
24
+ importlib_metadata==7.1.0
25
+ importlib_resources==6.4.0
26
+ intel-openmp==2021.4.0
27
+ itsdangerous==2.2.0
28
+ Jinja2==3.1.4
29
+ joblib==1.4.2
30
+ jsonpatch==1.33
31
+ jsonpointer==3.0.0
32
+ jsonschema==4.23.0
33
+ jsonschema-specifications==2023.12.1
34
+ kubernetes==30.1.0
35
+ langchain==0.2.7
36
+ langchain_community==0.2.7
37
+ langchain-core==0.2.18
38
+ langchain-huggingface==0.0.3
39
+ langchain-openai==0.1.16
40
+ langchain-text-splitters==0.2.2
41
+ langchainhub==0.1.20
42
+ langsmith==0.1.90
43
+ markdown-it-py==3.0.0
44
+ MarkupSafe==2.1.5
45
+ marshmallow==3.21.3
46
+ mdurl==0.1.2
47
+ mkl==2021.4.0
48
+ mmh3==4.1.0
49
+ monotonic==1.6
50
+ mpmath==1.3.0
51
+ multidict==6.0.5
52
+ mypy-extensions==1.0.0
53
+ networkx==3.3
54
+ nltk==3.8.1
55
+ numpy==1.26.4
56
+ oauthlib==3.2.2
57
+ onnxruntime==1.18.1
58
+ openai==1.35.13
59
+ opentelemetry-api==1.25.0
60
+ opentelemetry-exporter-otlp-proto-common==1.25.0
61
+ opentelemetry-exporter-otlp-proto-grpc==1.25.0
62
+ opentelemetry-instrumentation==0.46b0
63
+ opentelemetry-instrumentation-asgi==0.46b0
64
+ opentelemetry-instrumentation-fastapi==0.46b0
65
+ opentelemetry-proto==1.25.0
66
+ opentelemetry-sdk==1.25.0
67
+ opentelemetry-semantic-conventions==0.46b0
68
+ opentelemetry-util-http==0.46b0
69
+ orjson==3.10.6
70
+ overrides==7.7.0
71
+ packaging==24.1
72
+ pandas==2.2.2
73
+ pillow==10.4.0
74
+ posthog==3.5.0
75
+ proto-plus==1.24.0
76
+ protobuf==4.25.3
77
+ py-cpuinfo==9.0.0
78
+ pyarrow==16.1.0
79
+ pyasn1==0.6.0
80
+ pyasn1_modules==0.4.0
81
+ pydantic==2.8.2
82
+ pydantic_core==2.20.1
83
+ pydeck==0.9.1
84
+ Pygments==2.18.0
85
+ pyparsing==3.1.2
86
+ pypdf==4.3.0
87
+ PyPDF2==3.0.1
88
+ pypdfium2==4.30.0
89
+ PyPika==0.48.9
90
+ python-dotenv
91
+ sentence-transformers
92
+ streamlit
93
+ tiktoken
94
+ tokenizers
95
+ torch
96
+ transformers
97
+ youtube_searchs
98
+ youtube-transcript-api