sohiebwedyan commited on
Commit
bb08e6d
·
verified ·
1 Parent(s): c367c75

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +80 -47
app.py CHANGED
@@ -1,64 +1,97 @@
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
 
 
 
 
8
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
41
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
  gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
  ),
59
  ],
 
 
 
 
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ import torch
2
+ from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
3
+ from PIL import Image
4
  import gradio as gr
 
5
 
6
+ # -----------------------------------------------------------------------------
7
+ # 1) GPU inference function
8
+ # -----------------------------------------------------------------------------
9
+ def run_inference_on_gpu(
10
+ model_id: str,
11
+ image: Image.Image,
12
+ prompt: str = "caption",
13
+ max_new_tokens: int = 100,
14
+ use_auth_token: bool = True
15
+ ) -> str:
16
+ # ensure CUDA is available
17
+ assert torch.cuda.is_available(), "CUDA not available—check your PyTorch installation!"
18
+ device = torch.device("cuda")
19
+ dtype = torch.float16
20
 
21
+ # load tokenizer + model onto GPU
22
+ processor = AutoProcessor.from_pretrained(model_id, use_auth_token=use_auth_token)
23
+ model = PaliGemmaForConditionalGeneration.from_pretrained(
24
+ model_id,
25
+ torch_dtype=dtype,
26
+ device_map=None,
27
+ use_auth_token=use_auth_token
28
+ ).to(device).eval()
29
 
30
+ # build multimodal prompt
31
+ image_tokens = "<image>"
32
+ multimodal_prompt = f"{image_tokens} {prompt}"
 
 
 
 
 
 
33
 
34
+ # prepare inputs
35
+ inputs = processor(
36
+ text=multimodal_prompt,
37
+ images=[image],
38
+ padding="longest",
39
+ return_tensors="pt",
40
+ do_convert_rgb=True,
41
+ )
42
+ inputs = {k: v.to(device) for k, v in inputs.items()}
43
 
44
+ # generate
45
+ with torch.no_grad():
46
+ outputs = model.generate(
47
+ **inputs,
48
+ max_new_tokens=max_new_tokens,
49
+ num_beams=3,
50
+ do_sample=False,
51
+ )
52
 
53
+ # decode
54
+ return processor.decode(outputs[0].cpu(), skip_special_tokens=True)
55
 
 
 
 
 
 
 
 
 
56
 
57
+ # -----------------------------------------------------------------------------
58
+ # 2) Gradio UI
59
+ # -----------------------------------------------------------------------------
60
+ MODEL_ID = "mychen76/paligemma-3b-mix-448-med_30k-ct-brain"
61
 
62
+ def caption_fn(image, prompt, max_tokens):
63
+ """
64
+ Gradio callback: takes a PIL image, a text prompt, and
65
+ max tokens → returns the generated caption.
66
+ """
67
+ return run_inference_on_gpu(
68
+ model_id=MODEL_ID,
69
+ image=image,
70
+ prompt=prompt,
71
+ max_new_tokens=max_tokens,
72
+ )
73
 
74
+ demo = gr.Interface(
75
+ fn=caption_fn,
76
+ inputs=[
77
+ gr.Image(type="pil", label="Upload CT Scan"),
78
+ gr.Textbox(
79
+ value="What do you see in this CT scan?",
80
+ label="Prompt"
81
+ ),
 
82
  gr.Slider(
83
+ minimum=10, maximum=300, step=10, value=100,
84
+ label="Max New Tokens"
 
 
 
85
  ),
86
  ],
87
+ outputs=gr.Textbox(label="Model Caption"),
88
+ title="PaliGemma CT-Scan Captioning",
89
+ description=(
90
+ "Upload a brain CT scan (or any image), write a short prompt, "
91
+ "and let the PaliGemma model describe what it sees."
92
+ ),
93
+ allow_flagging="never",
94
  )
95
 
 
96
  if __name__ == "__main__":
97
+ demo.launch(share=False) # set share=True if you need a public link