Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,295 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
"""
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
"""
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
"""
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from transformers import pipeline
|
4 |
import gradio as gr
|
5 |
+
import asyncio
|
6 |
+
import ipaddress
|
7 |
+
from typing import Tuple
|
8 |
|
9 |
+
|
10 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
11 |
+
|
12 |
+
|
13 |
+
gpt2_pipeline = pipeline("text-generation", model="Qwen/Qwen-1_8B-Chat", device=0 if torch.cuda.is_available() else -1, trust_remote_code=True)
|
14 |
+
Najeb_pipeline = pipeline("text-generation", model="sohiebwedyan/NAJEB_BOT", device=0 if torch.cuda.is_available() else -1)
|
15 |
+
llama2_pipeline = pipeline("text-generation", model="Harikrishnan46624/finetuned_llama2-1.1b-chat", device=0 if torch.cuda.is_available() else -1)
|
16 |
+
summarization_pipeline = pipeline("summarization", model="Falconsai/text_summarization", device=0 if torch.cuda.is_available() else -1)
|
17 |
+
|
18 |
+
previous_questions = []
|
19 |
+
|
20 |
+
async def generate_gpt2(question, max_length, num_beams, temperature):
|
21 |
+
return gpt2_pipeline(
|
22 |
+
question,
|
23 |
+
max_length=max_length,
|
24 |
+
num_return_sequences=1,
|
25 |
+
num_beams=num_beams,
|
26 |
+
do_sample=True,
|
27 |
+
top_k=50,
|
28 |
+
top_p=0.95,
|
29 |
+
temperature=temperature
|
30 |
+
)[0]['generated_text']
|
31 |
+
|
32 |
+
async def generate_Najeb(question, max_length, num_beams, temperature):
|
33 |
+
return Najeb_pipeline(
|
34 |
+
question,
|
35 |
+
max_length=max_length,
|
36 |
+
num_return_sequences=1,
|
37 |
+
num_beams=num_beams,
|
38 |
+
do_sample=True,
|
39 |
+
top_k=30,
|
40 |
+
top_p=0.85,
|
41 |
+
temperature=temperature
|
42 |
+
)[0]['generated_text']
|
43 |
+
|
44 |
+
async def generate_llama2(question, max_length, num_beams, temperature):
|
45 |
+
return llama2_pipeline(
|
46 |
+
question,
|
47 |
+
max_length=max_length,
|
48 |
+
num_return_sequences=1,
|
49 |
+
num_beams=num_beams,
|
50 |
+
do_sample=True,
|
51 |
+
top_k=30,
|
52 |
+
top_p=0.9,
|
53 |
+
temperature=temperature
|
54 |
+
)[0]['generated_text']
|
55 |
+
|
56 |
+
async def generate_responses_async(question, max_length=128, num_beams=2, temperature=0.5):
|
57 |
+
previous_questions.append(question)
|
58 |
+
|
59 |
+
|
60 |
+
gpt2_task = asyncio.create_task(generate_gpt2(question, max_length, num_beams, temperature))
|
61 |
+
Najeb_task = asyncio.create_task(generate_Najeb(question, max_length, num_beams, temperature))
|
62 |
+
llama2_task = asyncio.create_task(generate_llama2(question, max_length, num_beams, temperature))
|
63 |
+
|
64 |
+
gpt2_response, Najeb_response, llama2_response = await asyncio.gather(gpt2_task, Najeb_task, llama2_task)
|
65 |
+
|
66 |
+
|
67 |
+
combined_responses = f"GPT-2: {gpt2_response}\nNajeb: {Najeb_response}\nLLaMA 2: {llama2_response}"
|
68 |
+
summarized_response = summarization_pipeline(combined_responses, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
|
69 |
+
|
70 |
+
return {
|
71 |
+
"GPT-2 Answer": gpt2_response,
|
72 |
+
"Najeb Answer": Najeb_response,
|
73 |
+
"LLaMA 2 Answer": llama2_response,
|
74 |
+
"Summarized Answer": summarized_response,
|
75 |
+
"Previous Questions": "\n".join(previous_questions[-5:])
|
76 |
+
}
|
77 |
+
|
78 |
+
def handle_mode_selection(mode, input_text, max_length, num_beams, temperature):
|
79 |
+
if mode == "AI Question Answering":
|
80 |
+
result = asyncio.run(generate_responses_async(input_text, max_length, num_beams, temperature))
|
81 |
+
return (
|
82 |
+
f"**GPT-2 Model Response:**\n{result['GPT-2 Answer']}",
|
83 |
+
f"**Najeb Model Response:**\n{result['Najeb Answer']}",
|
84 |
+
f"**LLaMA 2 Model Response:**\n{result['LLaMA 2 Answer']}",
|
85 |
+
f"**Summarized Response:**\n{result['Summarized Answer']}",
|
86 |
+
f"**Previous Questions:**\n{result['Previous Questions']}"
|
87 |
+
)
|
88 |
+
else:
|
89 |
+
subnet_result = calculate_subnet(input_text)
|
90 |
+
return subnet_result, "", "", "", ""
|
91 |
+
def get_network(ip_input: str) -> Tuple[ipaddress.IPv4Network, str]:
|
92 |
+
try:
|
93 |
+
if ip_input.count("/") == 0:
|
94 |
+
ip_input += "/24"
|
95 |
+
net = ipaddress.IPv4Network(ip_input, strict=False)
|
96 |
+
ip = ip_input.split("/")[0]
|
97 |
+
return (net, ip)
|
98 |
+
except ValueError:
|
99 |
+
return None, None
|
100 |
+
|
101 |
+
def calculate_subnet(ip_input: str) -> str:
|
102 |
+
network, ip = get_network(ip_input)
|
103 |
+
if network is None or ip is None:
|
104 |
+
return "Invalid IP Address or Subnet!"
|
105 |
+
|
106 |
+
|
107 |
+
network_address = network.network_address
|
108 |
+
broadcast_address = network.broadcast_address
|
109 |
+
usable_hosts = list(network.hosts())
|
110 |
+
num_usable_hosts = len(usable_hosts)
|
111 |
+
usable_hosts_range = f"{usable_hosts[0]} - {usable_hosts[-1]}" if usable_hosts else "NA"
|
112 |
+
|
113 |
+
|
114 |
+
octets = str(ip).split('.')
|
115 |
+
binary_octets = [bin(int(octet))[2:].zfill(8) for octet in octets]
|
116 |
+
bin_ip = '.'.join(binary_octets)
|
117 |
+
|
118 |
+
bin_addr = str(bin(int(network_address))[2:].zfill(32))
|
119 |
+
bin_addr = '.'.join([bin_addr[i:i+8] for i in range(0, len(bin_addr), 8)])
|
120 |
+
|
121 |
+
bin_mask = str(bin(int(network.netmask))[2:].zfill(32))
|
122 |
+
bin_mask = '.'.join([bin_mask[i:i+8] for i in range(0, len(bin_mask), 8)])
|
123 |
+
|
124 |
+
|
125 |
+
result = f"""
|
126 |
+
IP Address: {ip}
|
127 |
+
Address (bin): {bin_ip}
|
128 |
+
Network Address: {network_address}
|
129 |
+
Network Address (bin): {bin_addr}
|
130 |
+
Netmask: {network.netmask}
|
131 |
+
Netmask (bin): {bin_mask}
|
132 |
+
CIDR Notation: {network.prefixlen}
|
133 |
+
Broadcast Address: {broadcast_address}
|
134 |
+
Usable IP Range: {usable_hosts_range}
|
135 |
+
Number of Hosts: {network.num_addresses:,d}
|
136 |
+
Number of Usable Hosts: {num_usable_hosts:,d}
|
137 |
+
Wildcard Mask: {network.hostmask}
|
138 |
+
Private IP: {network.is_private}
|
139 |
"""
|
140 |
+
return result.strip()
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
custom_css = """
|
145 |
+
body {
|
146 |
+
background-color: #f0f8ff;
|
147 |
+
font-family: 'Arial', sans-serif;
|
148 |
+
color: #333;
|
149 |
+
}
|
150 |
+
|
151 |
+
h1 {
|
152 |
+
text-align: center;
|
153 |
+
color: #0066cc;
|
154 |
+
}
|
155 |
|
156 |
+
p {
|
157 |
+
text-align: center;
|
158 |
+
color: #333;
|
159 |
+
}
|
160 |
|
161 |
+
.gradio-container {
|
162 |
+
width: 80%;
|
163 |
+
margin: auto;
|
164 |
+
background-color: rgba(255, 255, 255, 0.8);
|
165 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
166 |
+
padding: 20px;
|
167 |
+
border-radius: 10px;
|
168 |
+
}
|
|
|
169 |
|
170 |
+
.gr-button {
|
171 |
+
background-color: #0066cc;
|
172 |
+
color: white;
|
173 |
+
border: none;
|
174 |
+
border-radius: 5px;
|
175 |
+
padding: 10px;
|
176 |
+
cursor: pointer;
|
177 |
+
transition: background-color 0.3s ease;
|
178 |
+
}
|
179 |
|
180 |
+
.gr-button:hover {
|
181 |
+
background-color: #004c99;
|
182 |
+
}
|
183 |
|
184 |
+
.gr-textbox {
|
185 |
+
border: 2px solid #0066cc;
|
186 |
+
border-radius: 5px;
|
187 |
+
padding: 10px;
|
188 |
+
background-color: #fff;
|
189 |
+
color: #333;
|
190 |
+
}
|
191 |
|
192 |
+
.gr-slider {
|
193 |
+
color: #0066cc;
|
194 |
+
}
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
+
.gr-json {
|
197 |
+
background-color: rgba(240, 248, 255, 0.8);
|
198 |
+
border-radius: 10px;
|
199 |
+
padding: 10px;
|
200 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
201 |
+
}
|
202 |
|
203 |
|
204 |
+
#image-container {
|
205 |
+
text-align: center;
|
206 |
+
position: relative;
|
207 |
+
}
|
208 |
+
|
209 |
+
#image-container img {
|
210 |
+
width: 1400px;
|
211 |
+
border-radius: 10px;
|
212 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
213 |
+
}
|
214 |
+
|
215 |
+
#image-container button {
|
216 |
+
position: absolute;
|
217 |
+
top: 50%;
|
218 |
+
left: 50%;
|
219 |
+
transform: translate(-50%, -50%);
|
220 |
+
background-color: rgba(0, 102, 204, 0.8);
|
221 |
+
color: white;
|
222 |
+
border: none;
|
223 |
+
padding: 10px 20px;
|
224 |
+
border-radius: 5px;
|
225 |
+
cursor: pointer;
|
226 |
+
font-size: 16px;
|
227 |
+
transition: background-color 0.3s ease;
|
228 |
+
}
|
229 |
+
|
230 |
+
#image-container button:hover {
|
231 |
+
background-color: rgba(0, 76, 153, 0.8);
|
232 |
+
}
|
233 |
+
|
234 |
+
.gr-box {
|
235 |
+
background-color: #ffffff;
|
236 |
+
border: 2px solid #0066cc;
|
237 |
+
border-radius: 10px;
|
238 |
+
padding: 10px;
|
239 |
+
margin-top: 10px;
|
240 |
+
}
|
241 |
+
#GPT2_title, #Najeb_title, #LLaMA_title, #summary_title, #previous_title {
|
242 |
+
color: black;
|
243 |
+
font-weight: bold;
|
244 |
+
}
|
245 |
"""
|
246 |
+
|
247 |
+
scroll_js = """
|
248 |
+
<script>
|
249 |
+
function scrollToTop() {
|
250 |
+
document.getElementById('target-section').scrollIntoView({behavior: 'smooth'});
|
251 |
+
}
|
252 |
+
</script>
|
253 |
"""
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
iface = gr.Blocks(css=custom_css)
|
258 |
+
|
259 |
+
with iface:
|
260 |
+
gr.Markdown(f"<h1>Welcome to Najeb</h1><p>AI Question & Subnet Calculator, Enter your question or IP address to generate answers or calculate subnets.</p>")
|
261 |
+
|
262 |
+
gr.HTML(f"""
|
263 |
+
<div id="image-container">
|
264 |
+
<img src="https://news.cornell.edu/sites/default/files/styles/story_thumbnail_xlarge/public/2024-07/robot-1280x720_0.jpg?itok=AF6MakCq" alt="AI Image">
|
265 |
+
<button onclick="scrollToTop()">Go to Najeb</button>
|
266 |
+
</div>
|
267 |
+
{scroll_js} <!-- Adding the JS to handle scrolling -->
|
268 |
+
""")
|
269 |
+
|
270 |
+
|
271 |
+
with gr.Row():
|
272 |
+
mode_selector = gr.Radio(["AI Question Answering", "Subnet Calculation"], label="Select Mode", value="AI Question Answering")
|
273 |
+
|
274 |
+
with gr.Row():
|
275 |
+
with gr.Column():
|
276 |
+
input_text = gr.Textbox(label="Enter your question or IP", placeholder="Type here...", lines=2)
|
277 |
+
max_length_slider = gr.Slider(50, 1024, 128, label="Max Length")
|
278 |
+
num_beams_slider = gr.Slider(1, 10, 2, label="Number of Beams", step=1)
|
279 |
+
temperature_slider = gr.Slider(0.1, 1.0, 0.5, label="Temperature", step=0.1)
|
280 |
+
submit_button = gr.Button("Submit")
|
281 |
+
|
282 |
+
with gr.Column():
|
283 |
+
gpt2_output_box = gr.Markdown(label="GPT-2 Model Response")
|
284 |
+
najeb_output_box = gr.Markdown(label="Najeb Model Response")
|
285 |
+
llama2_output_box = gr.Markdown(label="LLaMA 2 Model Response")
|
286 |
+
summary_output_box = gr.Markdown(label="Summarized Response")
|
287 |
+
previous_questions_box = gr.Markdown(label="Previous Questions")
|
288 |
+
|
289 |
+
submit_button.click(
|
290 |
+
handle_mode_selection,
|
291 |
+
inputs=[mode_selector, input_text, max_length_slider, num_beams_slider, temperature_slider],
|
292 |
+
outputs=[gpt2_output_box, najeb_output_box, llama2_output_box, summary_output_box, previous_questions_box]
|
293 |
+
)
|
294 |
+
|
295 |
+
iface.launch(share=True)
|