Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,7 @@ token = os.getenv("HF_TOKEN")
|
|
16 |
device = 0 if torch.cuda.is_available() else -1
|
17 |
Najeb_pipeline = pipeline("text-generation", model="sohiebwedyan/NAJEB_BOT", token=token, device=device)
|
18 |
gpt2_pipeline = pipeline("text-generation", model="Qwen/Qwen-1_8B-Chat", device=device, trust_remote_code=True)
|
19 |
-
llama2_pipeline = pipeline("text-generation", model="Harikrishnan46624/finetuned_llama2-1.1b-chat", device=device)
|
20 |
summarization_pipeline = pipeline("summarization", model="Falconsai/text_summarization", device=device)
|
21 |
|
22 |
previous_questions = []
|
@@ -46,7 +46,8 @@ async def generate_Najeb(question, max_length, num_beams, temperature):
|
|
46 |
top_p=0.85,
|
47 |
temperature=temperature
|
48 |
)[0]['generated_text']
|
49 |
-
|
|
|
50 |
# توليد الردود باستخدام LLaMA 2
|
51 |
async def generate_llama2(question, max_length, num_beams, temperature):
|
52 |
return llama2_pipeline(
|
@@ -58,7 +59,7 @@ async def generate_llama2(question, max_length, num_beams, temperature):
|
|
58 |
top_k=50,
|
59 |
top_p=0.95,
|
60 |
temperature=temperature
|
61 |
-
)[0]['generated_text']
|
62 |
|
63 |
# التعامل مع الردود بشكل غير متزامن
|
64 |
async def generate_responses_async(question, max_length=128, num_beams=2, temperature=0.5):
|
@@ -67,19 +68,19 @@ async def generate_responses_async(question, max_length=128, num_beams=2, temper
|
|
67 |
# إنشاء المهام بشكل غير متزامن لتوليد الردود من الموديلات المختلفة
|
68 |
gpt2_task = asyncio.create_task(generate_gpt2(question, max_length, num_beams, temperature))
|
69 |
Najeb_task = asyncio.create_task(generate_Najeb(question, max_length, num_beams, temperature))
|
70 |
-
llama2_task = asyncio.create_task(generate_llama2(question, max_length, num_beams, temperature))
|
71 |
|
72 |
# تجميع الردود من جميع الموديلات
|
73 |
-
gpt2_response, Najeb_response
|
74 |
|
75 |
# دمج الردود و تلخيصها
|
76 |
-
combined_responses = f"GPT-2: {gpt2_response}\nNajeb: {Najeb_response}
|
77 |
summarized_response = summarization_pipeline(combined_responses, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
|
78 |
|
79 |
return {
|
80 |
"GPT-2 Answer": gpt2_response,
|
81 |
"Najeb Answer": Najeb_response,
|
82 |
-
"LLaMA 2 Answer": llama2_response,
|
83 |
"Summarized Answer": summarized_response,
|
84 |
"Previous Questions": "\n".join(previous_questions[-5:])
|
85 |
}
|
@@ -91,7 +92,7 @@ def handle_mode_selection(mode, input_text, max_length, num_beams, temperature):
|
|
91 |
return (
|
92 |
f"**GPT-2 Model Response:**\n{result['GPT-2 Answer']}",
|
93 |
f"**Najeb Model Response:**\n{result['Najeb Answer']}",
|
94 |
-
f"**LLaMA 2 Model Response:**\n{result['LLaMA 2 Answer']}",
|
95 |
f"**Summarized Response:**\n{result['Summarized Answer']}",
|
96 |
f"**Previous Questions:**\n{result['Previous Questions']}"
|
97 |
)
|
@@ -245,7 +246,7 @@ gr.Interface(
|
|
245 |
outputs=[
|
246 |
gr.Markdown(label="GPT-2 Answer"),
|
247 |
gr.Markdown(label="Najeb Answer"),
|
248 |
-
gr.Markdown(label="LLaMA 2 Answer"),
|
249 |
gr.Markdown(label="Summarized Answer"),
|
250 |
gr.Markdown(label="Previous Questions")
|
251 |
],
|
|
|
16 |
device = 0 if torch.cuda.is_available() else -1
|
17 |
Najeb_pipeline = pipeline("text-generation", model="sohiebwedyan/NAJEB_BOT", token=token, device=device)
|
18 |
gpt2_pipeline = pipeline("text-generation", model="Qwen/Qwen-1_8B-Chat", device=device, trust_remote_code=True)
|
19 |
+
#llama2_pipeline = pipeline("text-generation", model="Harikrishnan46624/finetuned_llama2-1.1b-chat", device=device)
|
20 |
summarization_pipeline = pipeline("summarization", model="Falconsai/text_summarization", device=device)
|
21 |
|
22 |
previous_questions = []
|
|
|
46 |
top_p=0.85,
|
47 |
temperature=temperature
|
48 |
)[0]['generated_text']
|
49 |
+
|
50 |
+
'''
|
51 |
# توليد الردود باستخدام LLaMA 2
|
52 |
async def generate_llama2(question, max_length, num_beams, temperature):
|
53 |
return llama2_pipeline(
|
|
|
59 |
top_k=50,
|
60 |
top_p=0.95,
|
61 |
temperature=temperature
|
62 |
+
)[0]['generated_text']'''
|
63 |
|
64 |
# التعامل مع الردود بشكل غير متزامن
|
65 |
async def generate_responses_async(question, max_length=128, num_beams=2, temperature=0.5):
|
|
|
68 |
# إنشاء المهام بشكل غير متزامن لتوليد الردود من الموديلات المختلفة
|
69 |
gpt2_task = asyncio.create_task(generate_gpt2(question, max_length, num_beams, temperature))
|
70 |
Najeb_task = asyncio.create_task(generate_Najeb(question, max_length, num_beams, temperature))
|
71 |
+
#llama2_task = asyncio.create_task(generate_llama2(question, max_length, num_beams, temperature))
|
72 |
|
73 |
# تجميع الردود من جميع الموديلات
|
74 |
+
gpt2_response, Najeb_response = await asyncio.gather(gpt2_task, Najeb_task, llama2_task)
|
75 |
|
76 |
# دمج الردود و تلخيصها
|
77 |
+
combined_responses = f"GPT-2: {gpt2_response}\nNajeb: {Najeb_response}"
|
78 |
summarized_response = summarization_pipeline(combined_responses, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
|
79 |
|
80 |
return {
|
81 |
"GPT-2 Answer": gpt2_response,
|
82 |
"Najeb Answer": Najeb_response,
|
83 |
+
#"LLaMA 2 Answer": llama2_response,
|
84 |
"Summarized Answer": summarized_response,
|
85 |
"Previous Questions": "\n".join(previous_questions[-5:])
|
86 |
}
|
|
|
92 |
return (
|
93 |
f"**GPT-2 Model Response:**\n{result['GPT-2 Answer']}",
|
94 |
f"**Najeb Model Response:**\n{result['Najeb Answer']}",
|
95 |
+
#f"**LLaMA 2 Model Response:**\n{result['LLaMA 2 Answer']}",
|
96 |
f"**Summarized Response:**\n{result['Summarized Answer']}",
|
97 |
f"**Previous Questions:**\n{result['Previous Questions']}"
|
98 |
)
|
|
|
246 |
outputs=[
|
247 |
gr.Markdown(label="GPT-2 Answer"),
|
248 |
gr.Markdown(label="Najeb Answer"),
|
249 |
+
#gr.Markdown(label="LLaMA 2 Answer"),
|
250 |
gr.Markdown(label="Summarized Answer"),
|
251 |
gr.Markdown(label="Previous Questions")
|
252 |
],
|