sohiebwedyan commited on
Commit
c7fda9c
·
verified ·
1 Parent(s): 057b9bb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -9
app.py CHANGED
@@ -16,7 +16,7 @@ token = os.getenv("HF_TOKEN")
16
  device = 0 if torch.cuda.is_available() else -1
17
  Najeb_pipeline = pipeline("text-generation", model="sohiebwedyan/NAJEB_BOT", token=token, device=device)
18
  gpt2_pipeline = pipeline("text-generation", model="Qwen/Qwen-1_8B-Chat", device=device, trust_remote_code=True)
19
- llama2_pipeline = pipeline("text-generation", model="Harikrishnan46624/finetuned_llama2-1.1b-chat", device=device)
20
  summarization_pipeline = pipeline("summarization", model="Falconsai/text_summarization", device=device)
21
 
22
  previous_questions = []
@@ -46,7 +46,8 @@ async def generate_Najeb(question, max_length, num_beams, temperature):
46
  top_p=0.85,
47
  temperature=temperature
48
  )[0]['generated_text']
49
-
 
50
  # توليد الردود باستخدام LLaMA 2
51
  async def generate_llama2(question, max_length, num_beams, temperature):
52
  return llama2_pipeline(
@@ -58,7 +59,7 @@ async def generate_llama2(question, max_length, num_beams, temperature):
58
  top_k=50,
59
  top_p=0.95,
60
  temperature=temperature
61
- )[0]['generated_text']
62
 
63
  # التعامل مع الردود بشكل غير متزامن
64
  async def generate_responses_async(question, max_length=128, num_beams=2, temperature=0.5):
@@ -67,19 +68,19 @@ async def generate_responses_async(question, max_length=128, num_beams=2, temper
67
  # إنشاء المهام بشكل غير متزامن لتوليد الردود من الموديلات المختلفة
68
  gpt2_task = asyncio.create_task(generate_gpt2(question, max_length, num_beams, temperature))
69
  Najeb_task = asyncio.create_task(generate_Najeb(question, max_length, num_beams, temperature))
70
- llama2_task = asyncio.create_task(generate_llama2(question, max_length, num_beams, temperature))
71
 
72
  # تجميع الردود من جميع الموديلات
73
- gpt2_response, Najeb_response, llama2_response = await asyncio.gather(gpt2_task, Najeb_task, llama2_task)
74
 
75
  # دمج الردود و تلخيصها
76
- combined_responses = f"GPT-2: {gpt2_response}\nNajeb: {Najeb_response}\nLLaMA 2: {llama2_response}"
77
  summarized_response = summarization_pipeline(combined_responses, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
78
 
79
  return {
80
  "GPT-2 Answer": gpt2_response,
81
  "Najeb Answer": Najeb_response,
82
- "LLaMA 2 Answer": llama2_response,
83
  "Summarized Answer": summarized_response,
84
  "Previous Questions": "\n".join(previous_questions[-5:])
85
  }
@@ -91,7 +92,7 @@ def handle_mode_selection(mode, input_text, max_length, num_beams, temperature):
91
  return (
92
  f"**GPT-2 Model Response:**\n{result['GPT-2 Answer']}",
93
  f"**Najeb Model Response:**\n{result['Najeb Answer']}",
94
- f"**LLaMA 2 Model Response:**\n{result['LLaMA 2 Answer']}",
95
  f"**Summarized Response:**\n{result['Summarized Answer']}",
96
  f"**Previous Questions:**\n{result['Previous Questions']}"
97
  )
@@ -245,7 +246,7 @@ gr.Interface(
245
  outputs=[
246
  gr.Markdown(label="GPT-2 Answer"),
247
  gr.Markdown(label="Najeb Answer"),
248
- gr.Markdown(label="LLaMA 2 Answer"),
249
  gr.Markdown(label="Summarized Answer"),
250
  gr.Markdown(label="Previous Questions")
251
  ],
 
16
  device = 0 if torch.cuda.is_available() else -1
17
  Najeb_pipeline = pipeline("text-generation", model="sohiebwedyan/NAJEB_BOT", token=token, device=device)
18
  gpt2_pipeline = pipeline("text-generation", model="Qwen/Qwen-1_8B-Chat", device=device, trust_remote_code=True)
19
+ #llama2_pipeline = pipeline("text-generation", model="Harikrishnan46624/finetuned_llama2-1.1b-chat", device=device)
20
  summarization_pipeline = pipeline("summarization", model="Falconsai/text_summarization", device=device)
21
 
22
  previous_questions = []
 
46
  top_p=0.85,
47
  temperature=temperature
48
  )[0]['generated_text']
49
+
50
+ '''
51
  # توليد الردود باستخدام LLaMA 2
52
  async def generate_llama2(question, max_length, num_beams, temperature):
53
  return llama2_pipeline(
 
59
  top_k=50,
60
  top_p=0.95,
61
  temperature=temperature
62
+ )[0]['generated_text']'''
63
 
64
  # التعامل مع الردود بشكل غير متزامن
65
  async def generate_responses_async(question, max_length=128, num_beams=2, temperature=0.5):
 
68
  # إنشاء المهام بشكل غير متزامن لتوليد الردود من الموديلات المختلفة
69
  gpt2_task = asyncio.create_task(generate_gpt2(question, max_length, num_beams, temperature))
70
  Najeb_task = asyncio.create_task(generate_Najeb(question, max_length, num_beams, temperature))
71
+ #llama2_task = asyncio.create_task(generate_llama2(question, max_length, num_beams, temperature))
72
 
73
  # تجميع الردود من جميع الموديلات
74
+ gpt2_response, Najeb_response = await asyncio.gather(gpt2_task, Najeb_task, llama2_task)
75
 
76
  # دمج الردود و تلخيصها
77
+ combined_responses = f"GPT-2: {gpt2_response}\nNajeb: {Najeb_response}"
78
  summarized_response = summarization_pipeline(combined_responses, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
79
 
80
  return {
81
  "GPT-2 Answer": gpt2_response,
82
  "Najeb Answer": Najeb_response,
83
+ #"LLaMA 2 Answer": llama2_response,
84
  "Summarized Answer": summarized_response,
85
  "Previous Questions": "\n".join(previous_questions[-5:])
86
  }
 
92
  return (
93
  f"**GPT-2 Model Response:**\n{result['GPT-2 Answer']}",
94
  f"**Najeb Model Response:**\n{result['Najeb Answer']}",
95
+ #f"**LLaMA 2 Model Response:**\n{result['LLaMA 2 Answer']}",
96
  f"**Summarized Response:**\n{result['Summarized Answer']}",
97
  f"**Previous Questions:**\n{result['Previous Questions']}"
98
  )
 
246
  outputs=[
247
  gr.Markdown(label="GPT-2 Answer"),
248
  gr.Markdown(label="Najeb Answer"),
249
+ #gr.Markdown(label="LLaMA 2 Answer"),
250
  gr.Markdown(label="Summarized Answer"),
251
  gr.Markdown(label="Previous Questions")
252
  ],