Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,24 +5,32 @@ import gradio as gr
|
|
5 |
import asyncio
|
6 |
import ipaddress
|
7 |
from typing import Tuple
|
|
|
8 |
|
9 |
-
# تعيين المتغيرات البيئية لتهيئة PyTorch لاستخدام الـ GPU إذا كان متاحًا
|
10 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
# إعداد الأنابيب للموديلات المختلفة باستخدام PyTorch
|
16 |
-
device = 0 if torch.cuda.is_available() else -1
|
17 |
-
Najeb_pipeline = pipeline("text-generation", model="sohiebwedyan/NAJEB_BOT", token=token, device=device)
|
18 |
-
#gpt2_pipeline = pipeline("text-generation", model="Qwen/Qwen-1_8B-Chat", device=device, trust_remote_code=True)
|
19 |
-
gpt2_pipeline = pipeline("text-generation", model="Harikrishnan46624/finetuned_llama2-1.1b-chat", device=device)
|
20 |
-
summarization_pipeline = pipeline("summarization", model="Falconsai/text_summarization", device=device)
|
21 |
|
22 |
previous_questions = []
|
23 |
|
24 |
|
25 |
-
# توليد الردود باستخدام GPT-2
|
26 |
async def generate_gpt2(question, max_length, num_beams, temperature):
|
27 |
return gpt2_pipeline(
|
28 |
question,
|
@@ -30,12 +38,11 @@ async def generate_gpt2(question, max_length, num_beams, temperature):
|
|
30 |
num_return_sequences=1,
|
31 |
num_beams=num_beams,
|
32 |
do_sample=True,
|
33 |
-
top_k=
|
34 |
-
top_p=0.
|
35 |
temperature=temperature
|
36 |
)[0]['generated_text']
|
37 |
|
38 |
-
# توليد الردود باستخدام Najeb
|
39 |
async def generate_Najeb(question, max_length, num_beams, temperature):
|
40 |
return Najeb_pipeline(
|
41 |
question,
|
@@ -47,9 +54,7 @@ async def generate_Najeb(question, max_length, num_beams, temperature):
|
|
47 |
top_p=0.85,
|
48 |
temperature=temperature
|
49 |
)[0]['generated_text']
|
50 |
-
|
51 |
-
'''
|
52 |
-
# توليد الردود باستخدام LLaMA 2
|
53 |
async def generate_llama2(question, max_length, num_beams, temperature):
|
54 |
return llama2_pipeline(
|
55 |
question,
|
@@ -57,51 +62,44 @@ async def generate_llama2(question, max_length, num_beams, temperature):
|
|
57 |
num_return_sequences=1,
|
58 |
num_beams=num_beams,
|
59 |
do_sample=True,
|
60 |
-
top_k=
|
61 |
-
top_p=0.
|
62 |
temperature=temperature
|
63 |
-
)[0]['generated_text']
|
|
|
64 |
|
65 |
-
# التعامل مع الردود بشكل غير متزامن
|
66 |
async def generate_responses_async(question, max_length=128, num_beams=2, temperature=0.5):
|
|
|
|
|
|
|
67 |
previous_questions.append(question)
|
68 |
|
69 |
-
# إنشاء المهام بشكل غير متزامن لتوليد الردود من الموديلات المختلفة
|
70 |
gpt2_task = asyncio.create_task(generate_gpt2(question, max_length, num_beams, temperature))
|
71 |
Najeb_task = asyncio.create_task(generate_Najeb(question, max_length, num_beams, temperature))
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
# تجميع الردود من جميع الموديلات
|
75 |
-
gpt2_response, Najeb_response = await asyncio.gather(gpt2_task, Najeb_task, llama2_task)
|
76 |
|
77 |
-
# دمج الردود و تلخيصها
|
78 |
-
combined_responses = f"GPT-2: {gpt2_response}\nNajeb: {Najeb_response}"
|
79 |
summarized_response = summarization_pipeline(combined_responses, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
|
80 |
|
81 |
return {
|
82 |
-
|
83 |
-
"Najeb
|
84 |
-
|
85 |
-
"
|
|
|
86 |
"Previous Questions": "\n".join(previous_questions[-5:])
|
87 |
}
|
88 |
|
89 |
-
# تحديد طريقة الحساب بناءً على المدخل
|
90 |
-
def handle_mode_selection(mode, input_text, max_length, num_beams, temperature):
|
91 |
-
if mode == "AI Question Answering":
|
92 |
-
result = asyncio.run(generate_responses_async(input_text, max_length, num_beams, temperature))
|
93 |
-
return (
|
94 |
-
f"**GPT-2 Model Response:**\n{result['GPT-2 Answer']}",
|
95 |
-
f"**Najeb Model Response:**\n{result['Najeb Answer']}",
|
96 |
-
#f"**LLaMA 2 Model Response:**\n{result['LLaMA 2 Answer']}",
|
97 |
-
f"**Summarized Response:**\n{result['Summarized Answer']}",
|
98 |
-
f"**Previous Questions:**\n{result['Previous Questions']}"
|
99 |
-
)
|
100 |
-
else:
|
101 |
-
subnet_result = calculate_subnet(input_text)
|
102 |
-
return subnet_result, "", "", "", ""
|
103 |
|
104 |
-
# الحصول على الشبكة وعنوان الـ IP
|
105 |
def get_network(ip_input: str) -> Tuple[ipaddress.IPv4Network, str]:
|
106 |
try:
|
107 |
if ip_input.count("/") == 0:
|
@@ -112,18 +110,19 @@ def get_network(ip_input: str) -> Tuple[ipaddress.IPv4Network, str]:
|
|
112 |
except ValueError:
|
113 |
return None, None
|
114 |
|
115 |
-
# حساب الشبكة الفرعية
|
116 |
def calculate_subnet(ip_input: str) -> str:
|
117 |
network, ip = get_network(ip_input)
|
118 |
if network is None or ip is None:
|
119 |
return "Invalid IP Address or Subnet!"
|
120 |
|
|
|
121 |
network_address = network.network_address
|
122 |
broadcast_address = network.broadcast_address
|
123 |
usable_hosts = list(network.hosts())
|
124 |
num_usable_hosts = len(usable_hosts)
|
125 |
usable_hosts_range = f"{usable_hosts[0]} - {usable_hosts[-1]}" if usable_hosts else "NA"
|
126 |
|
|
|
127 |
octets = str(ip).split('.')
|
128 |
binary_octets = [bin(int(octet))[2:].zfill(8) for octet in octets]
|
129 |
bin_ip = '.'.join(binary_octets)
|
@@ -134,6 +133,7 @@ def calculate_subnet(ip_input: str) -> str:
|
|
134 |
bin_mask = str(bin(int(network.netmask))[2:].zfill(32))
|
135 |
bin_mask = '.'.join([bin_mask[i:i+8] for i in range(0, len(bin_mask), 8)])
|
136 |
|
|
|
137 |
result = f"""
|
138 |
IP Address: {ip}
|
139 |
Address (bin): {bin_ip}
|
@@ -151,7 +151,17 @@ Private IP: {network.is_private}
|
|
151 |
"""
|
152 |
return result.strip()
|
153 |
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
custom_css = """
|
156 |
body {
|
157 |
background-color: #f0f8ff;
|
@@ -211,46 +221,85 @@ p {
|
|
211 |
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
212 |
}
|
213 |
|
|
|
214 |
#image-container {
|
215 |
text-align: center;
|
216 |
position: relative;
|
217 |
}
|
218 |
|
219 |
#image-container img {
|
220 |
-
width:
|
221 |
-
|
222 |
-
|
223 |
}
|
224 |
|
225 |
#image-container button {
|
226 |
position: absolute;
|
227 |
-
top:
|
228 |
-
left:
|
229 |
-
|
|
|
230 |
color: white;
|
231 |
border: none;
|
232 |
-
padding:
|
|
|
233 |
cursor: pointer;
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
}
|
235 |
"""
|
236 |
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import asyncio
|
6 |
import ipaddress
|
7 |
from typing import Tuple
|
8 |
+
from accelerate import Accelerator
|
9 |
|
|
|
10 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
11 |
|
12 |
+
accelerator = Accelerator()
|
13 |
+
|
14 |
+
gpt2_pipeline = accelerator.prepare(
|
15 |
+
pipeline("text-generation", model="Qwen/Qwen-1_8B-Chat", device=accelerator.device)
|
16 |
+
)
|
17 |
+
Najeb_pipeline = accelerator.prepare(
|
18 |
+
pipeline("text-generation", model="najeebjust/Najeeb", device=accelerator.device)
|
19 |
+
)
|
20 |
+
llama2_pipeline = accelerator.prepare(
|
21 |
+
pipeline("text-generation", model="Harikrishnan46624/finetuned_llama2-1.1b-chat", device=accelerator.device)
|
22 |
+
)
|
23 |
+
'''
|
24 |
+
gpt2_pipeline = pipeline("text-generation", model="Qwen/Qwen-1_8B-Chat", device=0 if torch.cuda.is_available() else -1, trust_remote_code=True)
|
25 |
+
Najeb_pipeline = pipeline("text-generation", model="najeebjust/Najeeb", device=0 if torch.cuda.is_available() else -1)
|
26 |
+
llama2_pipeline = pipeline("text-generation", model="Harikrishnan46624/finetuned_llama2-1.1b-chat", device=0 if torch.cuda.is_available() else -1)
|
27 |
+
'''
|
28 |
+
summarization_pipeline = pipeline("summarization", model="Falconsai/text_summarization", device=0 if torch.cuda.is_available() else -1)
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
previous_questions = []
|
32 |
|
33 |
|
|
|
34 |
async def generate_gpt2(question, max_length, num_beams, temperature):
|
35 |
return gpt2_pipeline(
|
36 |
question,
|
|
|
38 |
num_return_sequences=1,
|
39 |
num_beams=num_beams,
|
40 |
do_sample=True,
|
41 |
+
top_k=30,
|
42 |
+
top_p=0.9,
|
43 |
temperature=temperature
|
44 |
)[0]['generated_text']
|
45 |
|
|
|
46 |
async def generate_Najeb(question, max_length, num_beams, temperature):
|
47 |
return Najeb_pipeline(
|
48 |
question,
|
|
|
54 |
top_p=0.85,
|
55 |
temperature=temperature
|
56 |
)[0]['generated_text']
|
57 |
+
|
|
|
|
|
58 |
async def generate_llama2(question, max_length, num_beams, temperature):
|
59 |
return llama2_pipeline(
|
60 |
question,
|
|
|
62 |
num_return_sequences=1,
|
63 |
num_beams=num_beams,
|
64 |
do_sample=True,
|
65 |
+
top_k=30,
|
66 |
+
top_p=0.9,
|
67 |
temperature=temperature
|
68 |
+
)[0]['generated_text']
|
69 |
+
|
70 |
|
|
|
71 |
async def generate_responses_async(question, max_length=128, num_beams=2, temperature=0.5):
|
72 |
+
responses = {}
|
73 |
+
|
74 |
+
|
75 |
previous_questions.append(question)
|
76 |
|
|
|
77 |
gpt2_task = asyncio.create_task(generate_gpt2(question, max_length, num_beams, temperature))
|
78 |
Najeb_task = asyncio.create_task(generate_Najeb(question, max_length, num_beams, temperature))
|
79 |
+
llama2_task = asyncio.create_task(generate_llama2(question, max_length, num_beams, temperature))
|
80 |
+
|
81 |
+
gpt2_response, Najeb_response, llama2_response = await asyncio.gather(gpt2_task, Najeb_task, llama2_task)
|
82 |
+
|
83 |
+
responses['GPT-2'] = gpt2_response
|
84 |
+
responses['Najeb '] = Najeb_response
|
85 |
+
responses['LLaMA 2'] = llama2_response
|
86 |
+
|
87 |
+
|
88 |
+
combined_responses = f"GPT-2: {gpt2_response}\nNajeb: {Najeb_response}\nLLaMA 2: {llama2_response}"
|
89 |
|
|
|
|
|
90 |
|
|
|
|
|
91 |
summarized_response = summarization_pipeline(combined_responses, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
|
92 |
|
93 |
return {
|
94 |
+
|
95 |
+
"Najeb Answering Response": Najeb_response,
|
96 |
+
"GPT-2 Answering Response": gpt2_response,
|
97 |
+
"LLaMA 2 Answering Response": llama2_response,
|
98 |
+
"Summarized Answering Response": summarized_response,
|
99 |
"Previous Questions": "\n".join(previous_questions[-5:])
|
100 |
}
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
|
|
103 |
def get_network(ip_input: str) -> Tuple[ipaddress.IPv4Network, str]:
|
104 |
try:
|
105 |
if ip_input.count("/") == 0:
|
|
|
110 |
except ValueError:
|
111 |
return None, None
|
112 |
|
|
|
113 |
def calculate_subnet(ip_input: str) -> str:
|
114 |
network, ip = get_network(ip_input)
|
115 |
if network is None or ip is None:
|
116 |
return "Invalid IP Address or Subnet!"
|
117 |
|
118 |
+
|
119 |
network_address = network.network_address
|
120 |
broadcast_address = network.broadcast_address
|
121 |
usable_hosts = list(network.hosts())
|
122 |
num_usable_hosts = len(usable_hosts)
|
123 |
usable_hosts_range = f"{usable_hosts[0]} - {usable_hosts[-1]}" if usable_hosts else "NA"
|
124 |
|
125 |
+
|
126 |
octets = str(ip).split('.')
|
127 |
binary_octets = [bin(int(octet))[2:].zfill(8) for octet in octets]
|
128 |
bin_ip = '.'.join(binary_octets)
|
|
|
133 |
bin_mask = str(bin(int(network.netmask))[2:].zfill(32))
|
134 |
bin_mask = '.'.join([bin_mask[i:i+8] for i in range(0, len(bin_mask), 8)])
|
135 |
|
136 |
+
|
137 |
result = f"""
|
138 |
IP Address: {ip}
|
139 |
Address (bin): {bin_ip}
|
|
|
151 |
"""
|
152 |
return result.strip()
|
153 |
|
154 |
+
|
155 |
+
|
156 |
+
def handle_mode_selection(mode, input_text, max_length, num_beams, temperature):
|
157 |
+
if mode == "AI Question Answering":
|
158 |
+
result = asyncio.run(generate_responses_async(input_text, max_length, num_beams, temperature))
|
159 |
+
return result, ""
|
160 |
+
else:
|
161 |
+
subnet_result = calculate_subnet(input_text)
|
162 |
+
return {"Subnet Calculation Result": subnet_result}, ""
|
163 |
+
|
164 |
+
|
165 |
custom_css = """
|
166 |
body {
|
167 |
background-color: #f0f8ff;
|
|
|
221 |
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
222 |
}
|
223 |
|
224 |
+
|
225 |
#image-container {
|
226 |
text-align: center;
|
227 |
position: relative;
|
228 |
}
|
229 |
|
230 |
#image-container img {
|
231 |
+
width: 1400px;
|
232 |
+
border-radius: 10px;
|
233 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
234 |
}
|
235 |
|
236 |
#image-container button {
|
237 |
position: absolute;
|
238 |
+
top: 50%;
|
239 |
+
left: 50%;
|
240 |
+
transform: translate(-50%, -50%);
|
241 |
+
background-color: rgba(0, 102, 204, 0.8);
|
242 |
color: white;
|
243 |
border: none;
|
244 |
+
padding: 10px 20px;
|
245 |
+
border-radius: 5px;
|
246 |
cursor: pointer;
|
247 |
+
font-size: 16px;
|
248 |
+
transition: background-color 0.3s ease;
|
249 |
+
}
|
250 |
+
|
251 |
+
#image-container button:hover {
|
252 |
+
background-color: rgba(0, 76, 153, 0.8);
|
253 |
}
|
254 |
"""
|
255 |
|
256 |
+
|
257 |
+
scroll_js = """
|
258 |
+
<script>
|
259 |
+
function scrollToTop() {
|
260 |
+
document.getElementById('target-section').scrollIntoView({behavior: 'smooth'});
|
261 |
+
}
|
262 |
+
</script>
|
263 |
+
"""
|
264 |
+
|
265 |
+
|
266 |
+
iface = gr.Blocks(css=custom_css)
|
267 |
+
|
268 |
+
with iface:
|
269 |
+
gr.Markdown(f"<h1>Welcome to Najeb</h1><p>AI Question & Subnet Calculator, Enter your question or IP address to generate answers or calculate subnets.</p>")
|
270 |
+
|
271 |
+
|
272 |
+
gr.HTML(f"""
|
273 |
+
<div id="image-container">
|
274 |
+
<img src="https://news.cornell.edu/sites/default/files/styles/story_thumbnail_xlarge/public/2024-07/robot-1280x720_0.jpg?itok=AF6MakCq" alt="AI Image">
|
275 |
+
<button onclick="scrollToTop()">Go to Top</button>
|
276 |
+
</div>
|
277 |
+
{scroll_js} <!-- Adding the JS to handle scrolling -->
|
278 |
+
""")
|
279 |
+
|
280 |
+
|
281 |
+
gr.Markdown("<div id='target-section'></div>")
|
282 |
+
|
283 |
+
with gr.Row():
|
284 |
+
mode_selector = gr.Radio(["AI Question Answering", "Subnet Calculation"], label="Select Mode", value="AI Question Answering")
|
285 |
+
|
286 |
+
with gr.Row():
|
287 |
+
with gr.Column():
|
288 |
+
input_text = gr.Textbox(label="Enter your question or IP", placeholder="Type here...", lines=2)
|
289 |
+
max_length_slider = gr.Slider(minimum=50, maximum=1024, value=128, label="Max Length")
|
290 |
+
num_beams_slider = gr.Slider(minimum=1, maximum=10, value=2, label="Number of Beams", step=1)
|
291 |
+
temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.5, label="Temperature", step=0.1)
|
292 |
+
submit_button = gr.Button("Submit")
|
293 |
+
|
294 |
+
with gr.Column():
|
295 |
+
output_box = gr.JSON(label="Response Output")
|
296 |
+
previous_questions_box = gr.Markdown("### Previous Questions\n")
|
297 |
+
|
298 |
+
submit_button.click(
|
299 |
+
handle_mode_selection,
|
300 |
+
inputs=[mode_selector, input_text, max_length_slider, num_beams_slider, temperature_slider],
|
301 |
+
outputs=[output_box, previous_questions_box]
|
302 |
+
)
|
303 |
+
|
304 |
+
|
305 |
+
iface.launch(share=True)
|