Spaces:
Runtime error
Runtime error
import pandas as pd | |
import numpy as np | |
import pickle | |
import torch | |
from torch.utils.data import Dataset, DataLoader | |
from transformers import BertTokenizer, BertModel | |
from transformers import AutoTokenizer, AutoModel | |
import nltk | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
model = BertModel.from_pretrained('bert-base-uncased', output_hidden_states = True,) | |
def extract_context_words(x, window = 6): | |
paragraph, offset_start, offset_end = x['paragraph'], x['offset_start'], x['offset_end'] | |
target_word = paragraph[offset_start : offset_end] | |
paragraph = ' ' + paragraph + ' ' | |
offset_start = offset_start + 1 | |
offset_end = offset_end + 1 | |
prev_space_posn = (paragraph[:offset_start].rindex(' ') + 1) | |
end_space_posn = (offset_end + paragraph[offset_end:].index(' ')) | |
full_word = paragraph[prev_space_posn : end_space_posn] | |
prev_words = nltk.word_tokenize(paragraph[0:prev_space_posn]) | |
next_words = nltk.word_tokenize(paragraph[end_space_posn:]) | |
words_in_context_window = prev_words[-1*window:] + [full_word] + next_words[:window] | |
context_text = ' '.join(words_in_context_window) | |
return context_text | |
"""The following functions have been created with inspiration from https://github.com/arushiprakash/MachineLearning/blob/main/BERT%20Word%20Embeddings.ipynb""" | |
def bert_text_preparation(text, tokenizer): | |
"""Preparing the input for BERT | |
Takes a string argument and performs | |
pre-processing like adding special tokens, | |
tokenization, tokens to ids, and tokens to | |
segment ids. All tokens are mapped to seg- | |
ment id = 1. | |
Args: | |
text (str): Text to be converted | |
tokenizer (obj): Tokenizer object | |
to convert text into BERT-re- | |
adable tokens and ids | |
Returns: | |
list: List of BERT-readable tokens | |
obj: Torch tensor with token ids | |
obj: Torch tensor segment ids | |
""" | |
marked_text = "[CLS] " + text + " [SEP]" | |
tokenized_text = tokenizer.tokenize(marked_text) | |
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text) | |
segments_ids = [1]*len(indexed_tokens) | |
# Convert inputs to PyTorch tensors | |
tokens_tensor = torch.tensor([indexed_tokens]) | |
segments_tensors = torch.tensor([segments_ids]) | |
return tokenized_text, tokens_tensor, segments_tensors | |
def get_bert_embeddings(tokens_tensor, segments_tensors, model): | |
"""Get embeddings from an embedding model | |
Args: | |
tokens_tensor (obj): Torch tensor size [n_tokens] | |
with token ids for each token in text | |
segments_tensors (obj): Torch tensor size [n_tokens] | |
with segment ids for each token in text | |
model (obj): Embedding model to generate embeddings | |
from token and segment ids | |
Returns: | |
list: List of list of floats of size | |
[n_tokens, n_embedding_dimensions] | |
containing embeddings for each token | |
""" | |
# Gradient calculation id disabled | |
# Model is in inference mode | |
with torch.no_grad(): | |
outputs = model(tokens_tensor, segments_tensors) | |
# Removing the first hidden state | |
# The first state is the input state | |
hidden_states = outputs[2][1:] | |
# Getting embeddings from the final BERT layer | |
token_embeddings = hidden_states[-1] | |
# Collapsing the tensor into 1-dimension | |
token_embeddings = torch.squeeze(token_embeddings, dim=0) | |
# Converting torchtensors to lists | |
list_token_embeddings = [token_embed.tolist() for token_embed in token_embeddings] | |
return list_token_embeddings | |
def bert_embedding_extract(context_text, word): | |
tokenized_text, tokens_tensor, segments_tensors = bert_text_preparation(context_text, tokenizer) | |
list_token_embeddings = get_bert_embeddings(tokens_tensor, segments_tensors, model) | |
word_tokens,tt,st = bert_text_preparation(word, tokenizer) | |
word_embedding_all = [] | |
for word_tk in word_tokens: | |
word_index = tokenized_text.index(word_tk) | |
word_embedding = list_token_embeddings[word_index] | |
word_embedding_all.append(word_embedding) | |
word_embedding_mean = np.array(word_embedding_all).mean(axis=0) | |
return word_embedding_mean | |