import gradio as gr import nltk import pandas as pd nltk.download('punkt') from fincat_utils import extract_context_words from fincat_utils import bert_embedding_extract import pickle lr_clf = pickle.load(open("lr_clf_FiNCAT.pickle",'rb')) def score_fincat(txt): ''' Extracts numerals from financial texts and checks if they are in-claim or out-of claim Parameters: txt (str): Financial Text. This is to be given as input. Numerals present in this text will be evaluated. Returns: highlight (list): A list each element of which is a tuple. Each tuple has two elements i) word ii) whether the word is in-claim or out-of-claim. dff (pandas dataframe): A pandas dataframe having three columns 'numeral', 'prediction' (whether the word is in-claim or out-of-claim) and 'probability' (probabilty of the prediction). ''' li = [] highlight = [] txt = " " + txt + " " k = '' for word in txt.split(): if any(char.isdigit() for char in word): if word[-1] in ['.', ',', ';', ":", "-", "!", "?", ")", '"', "'"]: k = word[-1] word = word[:-1] st = txt.index(" " + word + k + " ")+1 k = '' ed = st + len(word) x = {'paragraph' : txt, 'offset_start':st, 'offset_end':ed} context_text = extract_context_words(x) features = bert_embedding_extract(context_text, word) prediction = lr_clf.predict(features.reshape(1, 768)) prediction_probability = '{:.4f}'.format(round(lr_clf.predict_proba(features.reshape(1, 768))[:,1][0], 4)) highlight.append((word, ' In-claim' if prediction==1 else 'Out-of-Claim')) li.append([word,' In-claim' if prediction==1 else 'Out-of-Claim', prediction_probability]) else: highlight.append((word, ' ')) headers = ['numeral', 'prediction', 'probability'] dff = pd.DataFrame(li) dff.columns = headers return highlight, dff iface = gr.Interface(fn=score_fincat, inputs=gr.inputs.Textbox(lines=5, placeholder="Enter Financial Text here..."), title="FiNCAT-2",description="Financial Numeral Claim Analysis Tool (Enhanced)", outputs=["highlight", "dataframe"], allow_flagging="never", examples=["In the year 2021, the markets were bullish. We expect to boost our sales by 80% this year.", "Last year our profit was $2.2M. This year it will increase to $3M"]) iface.launch()