nehulagrawal
commited on
Commit
·
c6caac4
1
Parent(s):
7701eda
Update app.py
Browse files
app.py
CHANGED
@@ -16,102 +16,124 @@ Show your appreciation for this space-age tool by hitting the 'Like' button and
|
|
16 |
📧 Contact us: [email protected]
|
17 |
👍 Like | """
|
18 |
|
19 |
-
|
20 |
-
url = url
|
21 |
-
if not os.path.exists(save_name):
|
22 |
-
file = requests.get(url)
|
23 |
-
open(save_name, 'wb').write(file.content)
|
24 |
-
|
25 |
-
# Download files
|
26 |
-
file_urls = [
|
27 |
-
'https://huggingface.co/spaces/foduucom/CandleStickScan-Stock-trading-yolov8/resolve/main/test/-2022-06-28-12-35-50_png.rf.8dee4bb645ea8b5036721b830d2636b1.jpg',
|
28 |
-
'https://huggingface.co/spaces/foduucom/CandleStickScan-Stock-trading-yolov8/resolve/main/test/-2022-06-28-12-45-10_png.rf.8b9177546e62a2422ad603b16f1f50b9.jpg',
|
29 |
-
'https://www.dropbox.com/s/7sjfwncffg8xej2/video_7.mp4?dl=1'
|
30 |
-
]
|
31 |
-
|
32 |
-
for i, url in enumerate(file_urls):
|
33 |
-
if 'mp4' in file_urls[i]:
|
34 |
-
download_file(
|
35 |
-
file_urls[i],
|
36 |
-
f"video.mp4"
|
37 |
-
)
|
38 |
-
# else:
|
39 |
-
# download_file(
|
40 |
-
# file_urls[i],
|
41 |
-
# f"image_{i}.jpg"
|
42 |
-
# )
|
43 |
|
44 |
# Load YOLO model
|
45 |
model = YOLO('foduucom/stockmarket-pattern-detection-yolov8')
|
46 |
|
47 |
-
|
48 |
-
def
|
49 |
-
image =
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
|
|
63 |
inputs_image = [
|
64 |
-
gr.
|
65 |
-
]
|
66 |
-
|
67 |
-
gr.
|
|
|
|
|
68 |
]
|
|
|
|
|
69 |
interface_image = gr.Interface(
|
70 |
-
fn=
|
71 |
inputs=inputs_image,
|
72 |
outputs=outputs_image,
|
73 |
title=model_heading,
|
74 |
-
|
75 |
-
examples=
|
76 |
cache_examples=False,
|
77 |
)
|
78 |
|
79 |
-
|
80 |
-
def show_preds_video(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
cap = cv2.VideoCapture(video_path)
|
82 |
-
while(cap.isOpened()):
|
83 |
-
ret, frame = cap.read()
|
84 |
-
if ret:
|
85 |
-
frame_copy = frame.copy()
|
86 |
-
outputs = model.predict(source=frame)
|
87 |
-
results = outputs[0].cpu().numpy()
|
88 |
-
for i, det in enumerate(results.boxes.xyxy):
|
89 |
-
cv2.rectangle(
|
90 |
-
frame_copy,
|
91 |
-
(int(det[0]), int(det[1])),
|
92 |
-
(int(det[2]), int(det[3])),
|
93 |
-
color=(0, 0, 255),
|
94 |
-
thickness=2,
|
95 |
-
lineType=cv2.LINE_AA
|
96 |
-
)
|
97 |
-
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
inputs_video = [
|
100 |
gr.components.Video(type="filepath", label="Input Video"),
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
]
|
103 |
-
outputs_video =
|
104 |
-
|
105 |
-
]
|
106 |
-
|
107 |
interface_video = gr.Interface(
|
108 |
fn=show_preds_video,
|
109 |
inputs=inputs_video,
|
110 |
outputs=outputs_video,
|
111 |
title=model_heading,
|
112 |
-
|
113 |
examples=video_path,
|
114 |
-
cache_examples=
|
115 |
)
|
116 |
|
117 |
gr.TabbedInterface(
|
|
|
16 |
📧 Contact us: [email protected]
|
17 |
👍 Like | """
|
18 |
|
19 |
+
image_path= [['test/test1.jpg', 'foduucom/stockmarket-pattern-detection-yolov8', 640, 0.25, 0.45], ['test/test2.jpg', 'foduucom/stockmarket-pattern-detection-yolov8', 640, 0.25, 0.45]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# Load YOLO model
|
22 |
model = YOLO('foduucom/stockmarket-pattern-detection-yolov8')
|
23 |
|
24 |
+
#############################################################Image Inference############################################################
|
25 |
+
def yolov8_img_inference(
|
26 |
+
image: gr.inputs.Image = None,
|
27 |
+
model_path: gr.inputs.Dropdown = None,
|
28 |
+
image_size: gr.inputs.Slider = 640,
|
29 |
+
conf_threshold: gr.inputs.Slider = 0.25,
|
30 |
+
iou_threshold: gr.inputs.Slider = 0.45,
|
31 |
+
):
|
32 |
+
"""
|
33 |
+
YOLOv8 inference function
|
34 |
+
Args:
|
35 |
+
image: Input image
|
36 |
+
model_path: Path to the model
|
37 |
+
image_size: Image size
|
38 |
+
conf_threshold: Confidence threshold
|
39 |
+
iou_threshold: IOU threshold
|
40 |
+
Returns:
|
41 |
+
Rendered image
|
42 |
+
"""
|
43 |
+
model = YOLO(model_path)
|
44 |
+
model.overrides['conf'] = conf_threshold
|
45 |
+
model.overrides['iou']= iou_threshold
|
46 |
+
model.overrides['agnostic_nms'] = False # NMS class-agnostic
|
47 |
+
model.overrides['max_det'] = 1000
|
48 |
+
image = read_image(image)
|
49 |
+
results = model.predict(image)
|
50 |
+
render = render_result(model=model, image=image, result=results[0])
|
51 |
+
|
52 |
+
return render
|
53 |
|
54 |
+
|
55 |
inputs_image = [
|
56 |
+
gr.inputs.Image(type="filepath", label="Input Image"),
|
57 |
+
gr.inputs.Dropdown(["foduucom/stockmarket-pattern-detection-yolov8"],
|
58 |
+
default="foduucom/stockmarket-pattern-detection-yolov8", label="Model"),
|
59 |
+
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
60 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
61 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
|
62 |
]
|
63 |
+
|
64 |
+
outputs_image =gr.outputs.Image(type="filepath", label="Output Image")
|
65 |
interface_image = gr.Interface(
|
66 |
+
fn=yolov8_img_inference,
|
67 |
inputs=inputs_image,
|
68 |
outputs=outputs_image,
|
69 |
title=model_heading,
|
70 |
+
description=description,
|
71 |
+
examples=image_path,
|
72 |
cache_examples=False,
|
73 |
)
|
74 |
|
75 |
+
##################################################Video Inference################################################################
|
76 |
+
def show_preds_video(
|
77 |
+
video_path: gr.components.Video = None,
|
78 |
+
model_path: gr.inputs.Dropdown = None,
|
79 |
+
image_size: gr.inputs.Slider = 640,
|
80 |
+
conf_threshold: gr.inputs.Slider = 0.25,
|
81 |
+
iou_threshold: gr.inputs.Slider = 0.45,
|
82 |
+
):
|
83 |
+
"""
|
84 |
+
Video inference function
|
85 |
+
Args:
|
86 |
+
video_path: Input video
|
87 |
+
model_path: Path to the model
|
88 |
+
image_size: Image size
|
89 |
+
conf_threshold: Confidence threshold
|
90 |
+
iou_threshold: IOU threshold
|
91 |
+
Returns:
|
92 |
+
Rendered video
|
93 |
+
"""
|
94 |
cap = cv2.VideoCapture(video_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
+
while cap.isOpened():
|
97 |
+
success, frame = cap.read()
|
98 |
+
|
99 |
+
if success:
|
100 |
+
model = YOLO(model_path)
|
101 |
+
model.overrides['conf'] = conf_threshold
|
102 |
+
model.overrides['iou'] = iou_threshold
|
103 |
+
model.overrides['agnostic_nms'] = False
|
104 |
+
model.overrides['max_det'] = 1000
|
105 |
+
results = model.predict(frame)
|
106 |
+
annotated_frame = results[0].plot()
|
107 |
+
|
108 |
+
cv2.imshow("YOLOv8 Inference", annotated_frame)
|
109 |
+
|
110 |
+
if cv2.waitKey(1) & 0xFF == ord("q"):
|
111 |
+
break
|
112 |
+
else:
|
113 |
+
break
|
114 |
+
|
115 |
+
cap.release()
|
116 |
+
cv2.destroyAllWindows()
|
117 |
+
|
118 |
inputs_video = [
|
119 |
gr.components.Video(type="filepath", label="Input Video"),
|
120 |
+
gr.inputs.Dropdown(["foduucom/stockmarket-pattern-detection-yolov8"],
|
121 |
+
default="foduucom/stockmarket-pattern-detection-yolov8", label="Model"),
|
122 |
+
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
123 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
124 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
|
125 |
|
126 |
]
|
127 |
+
outputs_video = gr.outputs.Image(type="filepath", label="Output Video")
|
128 |
+
video_path=[['test/video.mp4','foduucom/stockmarket-pattern-detection-yolov8', 640, 0.25, 0.45]]
|
|
|
|
|
129 |
interface_video = gr.Interface(
|
130 |
fn=show_preds_video,
|
131 |
inputs=inputs_video,
|
132 |
outputs=outputs_video,
|
133 |
title=model_heading,
|
134 |
+
description=description,
|
135 |
examples=video_path,
|
136 |
+
cache_examples=True,
|
137 |
)
|
138 |
|
139 |
gr.TabbedInterface(
|