nehulagrawal commited on
Commit
c6caac4
·
1 Parent(s): 7701eda

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +92 -70
app.py CHANGED
@@ -16,102 +16,124 @@ Show your appreciation for this space-age tool by hitting the 'Like' button and
16
  📧 Contact us: [email protected]
17
  👍 Like | """
18
 
19
- def download_file(url, save_name):
20
- url = url
21
- if not os.path.exists(save_name):
22
- file = requests.get(url)
23
- open(save_name, 'wb').write(file.content)
24
-
25
- # Download files
26
- file_urls = [
27
- 'https://huggingface.co/spaces/foduucom/CandleStickScan-Stock-trading-yolov8/resolve/main/test/-2022-06-28-12-35-50_png.rf.8dee4bb645ea8b5036721b830d2636b1.jpg',
28
- 'https://huggingface.co/spaces/foduucom/CandleStickScan-Stock-trading-yolov8/resolve/main/test/-2022-06-28-12-45-10_png.rf.8b9177546e62a2422ad603b16f1f50b9.jpg',
29
- 'https://www.dropbox.com/s/7sjfwncffg8xej2/video_7.mp4?dl=1'
30
- ]
31
-
32
- for i, url in enumerate(file_urls):
33
- if 'mp4' in file_urls[i]:
34
- download_file(
35
- file_urls[i],
36
- f"video.mp4"
37
- )
38
- # else:
39
- # download_file(
40
- # file_urls[i],
41
- # f"image_{i}.jpg"
42
- # )
43
 
44
  # Load YOLO model
45
  model = YOLO('foduucom/stockmarket-pattern-detection-yolov8')
46
 
47
- # Image Inference
48
- def show_preds_image(image_path):
49
- image = cv2.imread(image_path)
50
- outputs = model.predict(source=image_path)
51
- results = outputs[0].cpu().numpy()
52
- for i, det in enumerate(results.boxes.xyxy):
53
- cv2.rectangle(
54
- image,
55
- (int(det[0]), int(det[1])),
56
- (int(det[2]), int(det[3])),
57
- color=(0, 0, 255),
58
- thickness=2,
59
- lineType=cv2.LINE_AA
60
- )
61
- return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
 
63
  inputs_image = [
64
- gr.components.Image(type="filepath", label="Input Image"),
65
- ]
66
- outputs_image = [
67
- gr.components.Image(type="numpy", label="Output Image"),
 
 
68
  ]
 
 
69
  interface_image = gr.Interface(
70
- fn=show_preds_image,
71
  inputs=inputs_image,
72
  outputs=outputs_image,
73
  title=model_heading,
74
- descripiton=description,
75
- examples=path,
76
  cache_examples=False,
77
  )
78
 
79
- # Video Inference
80
- def show_preds_video(video_path):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
  cap = cv2.VideoCapture(video_path)
82
- while(cap.isOpened()):
83
- ret, frame = cap.read()
84
- if ret:
85
- frame_copy = frame.copy()
86
- outputs = model.predict(source=frame)
87
- results = outputs[0].cpu().numpy()
88
- for i, det in enumerate(results.boxes.xyxy):
89
- cv2.rectangle(
90
- frame_copy,
91
- (int(det[0]), int(det[1])),
92
- (int(det[2]), int(det[3])),
93
- color=(0, 0, 255),
94
- thickness=2,
95
- lineType=cv2.LINE_AA
96
- )
97
- yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
  inputs_video = [
100
  gr.components.Video(type="filepath", label="Input Video"),
 
 
 
 
 
101
 
102
  ]
103
- outputs_video = [
104
- gr.components.Image(type="numpy", label="Output Image"),
105
- ]
106
-
107
  interface_video = gr.Interface(
108
  fn=show_preds_video,
109
  inputs=inputs_video,
110
  outputs=outputs_video,
111
  title=model_heading,
112
- descripiton=description,
113
  examples=video_path,
114
- cache_examples=False,
115
  )
116
 
117
  gr.TabbedInterface(
 
16
  📧 Contact us: [email protected]
17
  👍 Like | """
18
 
19
+ image_path= [['test/test1.jpg', 'foduucom/stockmarket-pattern-detection-yolov8', 640, 0.25, 0.45], ['test/test2.jpg', 'foduucom/stockmarket-pattern-detection-yolov8', 640, 0.25, 0.45]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  # Load YOLO model
22
  model = YOLO('foduucom/stockmarket-pattern-detection-yolov8')
23
 
24
+ #############################################################Image Inference############################################################
25
+ def yolov8_img_inference(
26
+ image: gr.inputs.Image = None,
27
+ model_path: gr.inputs.Dropdown = None,
28
+ image_size: gr.inputs.Slider = 640,
29
+ conf_threshold: gr.inputs.Slider = 0.25,
30
+ iou_threshold: gr.inputs.Slider = 0.45,
31
+ ):
32
+ """
33
+ YOLOv8 inference function
34
+ Args:
35
+ image: Input image
36
+ model_path: Path to the model
37
+ image_size: Image size
38
+ conf_threshold: Confidence threshold
39
+ iou_threshold: IOU threshold
40
+ Returns:
41
+ Rendered image
42
+ """
43
+ model = YOLO(model_path)
44
+ model.overrides['conf'] = conf_threshold
45
+ model.overrides['iou']= iou_threshold
46
+ model.overrides['agnostic_nms'] = False # NMS class-agnostic
47
+ model.overrides['max_det'] = 1000
48
+ image = read_image(image)
49
+ results = model.predict(image)
50
+ render = render_result(model=model, image=image, result=results[0])
51
+
52
+ return render
53
 
54
+
55
  inputs_image = [
56
+ gr.inputs.Image(type="filepath", label="Input Image"),
57
+ gr.inputs.Dropdown(["foduucom/stockmarket-pattern-detection-yolov8"],
58
+ default="foduucom/stockmarket-pattern-detection-yolov8", label="Model"),
59
+ gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
60
+ gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
61
+ gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
62
  ]
63
+
64
+ outputs_image =gr.outputs.Image(type="filepath", label="Output Image")
65
  interface_image = gr.Interface(
66
+ fn=yolov8_img_inference,
67
  inputs=inputs_image,
68
  outputs=outputs_image,
69
  title=model_heading,
70
+ description=description,
71
+ examples=image_path,
72
  cache_examples=False,
73
  )
74
 
75
+ ##################################################Video Inference################################################################
76
+ def show_preds_video(
77
+ video_path: gr.components.Video = None,
78
+ model_path: gr.inputs.Dropdown = None,
79
+ image_size: gr.inputs.Slider = 640,
80
+ conf_threshold: gr.inputs.Slider = 0.25,
81
+ iou_threshold: gr.inputs.Slider = 0.45,
82
+ ):
83
+ """
84
+ Video inference function
85
+ Args:
86
+ video_path: Input video
87
+ model_path: Path to the model
88
+ image_size: Image size
89
+ conf_threshold: Confidence threshold
90
+ iou_threshold: IOU threshold
91
+ Returns:
92
+ Rendered video
93
+ """
94
  cap = cv2.VideoCapture(video_path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
 
96
+ while cap.isOpened():
97
+ success, frame = cap.read()
98
+
99
+ if success:
100
+ model = YOLO(model_path)
101
+ model.overrides['conf'] = conf_threshold
102
+ model.overrides['iou'] = iou_threshold
103
+ model.overrides['agnostic_nms'] = False
104
+ model.overrides['max_det'] = 1000
105
+ results = model.predict(frame)
106
+ annotated_frame = results[0].plot()
107
+
108
+ cv2.imshow("YOLOv8 Inference", annotated_frame)
109
+
110
+ if cv2.waitKey(1) & 0xFF == ord("q"):
111
+ break
112
+ else:
113
+ break
114
+
115
+ cap.release()
116
+ cv2.destroyAllWindows()
117
+
118
  inputs_video = [
119
  gr.components.Video(type="filepath", label="Input Video"),
120
+ gr.inputs.Dropdown(["foduucom/stockmarket-pattern-detection-yolov8"],
121
+ default="foduucom/stockmarket-pattern-detection-yolov8", label="Model"),
122
+ gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
123
+ gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
124
+ gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
125
 
126
  ]
127
+ outputs_video = gr.outputs.Image(type="filepath", label="Output Video")
128
+ video_path=[['test/video.mp4','foduucom/stockmarket-pattern-detection-yolov8', 640, 0.25, 0.45]]
 
 
129
  interface_video = gr.Interface(
130
  fn=show_preds_video,
131
  inputs=inputs_video,
132
  outputs=outputs_video,
133
  title=model_heading,
134
+ description=description,
135
  examples=video_path,
136
+ cache_examples=True,
137
  )
138
 
139
  gr.TabbedInterface(