|
|
|
|
|
from fastapi import FastAPI, Query |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
app = FastAPI() |
|
|
|
|
|
def load_prompter(): |
|
prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist") |
|
tokenizer = AutoTokenizer.from_pretrained("gpt2") |
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.padding_side = "left" |
|
return prompter_model, tokenizer |
|
|
|
prompter_model, prompter_tokenizer = load_prompter() |
|
|
|
@app.get("/generate") |
|
async def generate(text: str = Query(..., description="Input text to be processed by the model")): |
|
input_ids = prompter_tokenizer(text.strip() + " Rephrase:", return_tensors="pt").input_ids |
|
eos_id = prompter_tokenizer.eos_token_id |
|
outputs = prompter_model.generate(input_ids, do_sample=False, max_new_tokens=75, num_beams=8, num_return_sequences=1, eos_token_id=eos_id, pad_token_id=eos_id, length_penalty=-1.0) |
|
output_texts = prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
res = output_texts[0].replace(text + " Rephrase:", "").strip() |
|
return {"result": res} |
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|