Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,28 @@
|
|
1 |
-
import
|
2 |
-
|
|
|
3 |
|
4 |
-
|
5 |
-
from io import BytesIO
|
6 |
-
from PIL import Image
|
7 |
-
import random
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
def load_model(model_name):
|
13 |
-
# モデルをロードするロジックをここに追加
|
14 |
-
# ここでは、PILで空の画像を生成する簡易的な例を示します
|
15 |
-
def model(prompt):
|
16 |
-
img = Image.new('RGB', (256, 256), color = (73, 109, 137))
|
17 |
-
return img
|
18 |
-
return model
|
19 |
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
model_str = request.args.get('model')
|
27 |
-
|
28 |
-
if model_str not in models_load:
|
29 |
-
abort(404, description="Model not found")
|
30 |
-
|
31 |
-
model = models_load[model_str]
|
32 |
-
noise = str(random.randint(0, 99999999999))
|
33 |
-
image = model(f'{prompt} {noise}')
|
34 |
-
|
35 |
-
# 画像をバイナリで保存し、レスポンスとして返す
|
36 |
-
img_bytes = BytesIO()
|
37 |
-
image.save(img_bytes, format='PNG')
|
38 |
-
img_bytes.seek(0)
|
39 |
-
|
40 |
-
return send_file(img_bytes, mimetype='image/png')
|
41 |
-
|
42 |
-
if __name__ == '__main__':
|
43 |
-
app.run(host='0.0.0.0', port=5000)
|
|
|
1 |
+
from fastapi import FastAPI, Query
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
|
5 |
+
app = FastAPI()
|
|
|
|
|
|
|
6 |
|
7 |
+
# モデルとトークナイザーのロード
|
8 |
+
def load_prompter():
|
9 |
+
prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist")
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
11 |
+
tokenizer.pad_token = tokenizer.eos_token
|
12 |
+
tokenizer.padding_side = "left"
|
13 |
+
return prompter_model, tokenizer
|
14 |
|
15 |
+
prompter_model, prompter_tokenizer = load_prompter()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
@app.get("/generate")
|
18 |
+
async def generate(text: str = Query(..., description="Input text to be processed by the model")):
|
19 |
+
input_ids = prompter_tokenizer(text.strip() + " Rephrase:", return_tensors="pt").input_ids
|
20 |
+
eos_id = prompter_tokenizer.eos_token_id
|
21 |
+
outputs = prompter_model.generate(input_ids, do_sample=False, max_new_tokens=75, num_beams=8, num_return_sequences=1, eos_token_id=eos_id, pad_token_id=eos_id, length_penalty=-1.0)
|
22 |
+
output_texts = prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
23 |
+
res = output_texts[0].replace(text + " Rephrase:", "").strip()
|
24 |
+
return {"result": res}
|
25 |
|
26 |
+
if __name__ == "__main__":
|
27 |
+
import uvicorn
|
28 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|