from fastapi import FastAPI, Query from transformers import AutoModelForCausalLM, AutoTokenizer import torch app = FastAPI() # モデルとトークナイザーのロード def load_prompter(): prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist") tokenizer = AutoTokenizer.from_pretrained("gpt2") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" return prompter_model, tokenizer prompter_model, prompter_tokenizer = load_prompter() @app.get("/") async def generate(text: str = Query(..., description="Input text to be processed by the model")): input_ids = prompter_tokenizer(text.strip() + " Rephrase:", return_tensors="pt").input_ids eos_id = prompter_tokenizer.eos_token_id outputs = prompter_model.generate(input_ids, do_sample=False, max_new_tokens=75, num_beams=8, num_return_sequences=1, eos_token_id=eos_id, pad_token_id=eos_id, length_penalty=-1.0) output_texts = prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True) res = output_texts[0].replace(text + " Rephrase:", "").strip() return {"result": res} if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)