|
import argparse |
|
import torch |
|
from PIL import Image |
|
import json |
|
import os |
|
import numpy as np |
|
from sklearn.metrics import roc_auc_score, average_precision_score |
|
from tqdm import tqdm |
|
|
|
from gazelle.model import get_gazelle_model |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--data_path", type=str, default="./data/videoattentiontarget") |
|
parser.add_argument("--model_name", type=str, default="gazelle_dinov2_vitl14_inout") |
|
parser.add_argument("--ckpt_path", type=str, default="./checkpoints/gazelle_dinov2_vitl14_inout.pt") |
|
parser.add_argument("--batch_size", type=int, default=64) |
|
args = parser.parse_args() |
|
|
|
class VideoAttentionTarget(torch.utils.data.Dataset): |
|
def __init__(self, path, img_transform): |
|
self.sequences = json.load(open(os.path.join(path, "test_preprocessed.json"), "rb")) |
|
self.frames = [] |
|
for i in range(len(self.sequences)): |
|
for j in range(len(self.sequences[i]['frames'])): |
|
self.frames.append((i, j)) |
|
self.path = path |
|
self.transform = img_transform |
|
|
|
def __getitem__(self, idx): |
|
seq_idx, frame_idx = self.frames[idx] |
|
seq = self.sequences[seq_idx] |
|
frame = seq['frames'][frame_idx] |
|
image = self.transform(Image.open(os.path.join(self.path, frame['path'])).convert("RGB")) |
|
bboxes = [head['bbox_norm'] for head in frame['heads']] |
|
gazex = [head['gazex_norm'] for head in frame['heads']] |
|
gazey = [head['gazey_norm'] for head in frame['heads']] |
|
inout = [head['inout'] for head in frame['heads']] |
|
|
|
return image, bboxes, gazex, gazey, inout |
|
|
|
def __len__(self): |
|
return len(self.frames) |
|
|
|
def collate(batch): |
|
images, bboxes, gazex, gazey, inout = zip(*batch) |
|
return torch.stack(images), list(bboxes), list(gazex), list(gazey), list(inout) |
|
|
|
|
|
|
|
|
|
|
|
def vat_auc(heatmap, gt_gazex, gt_gazey): |
|
res = 64 |
|
sigma = 3 |
|
assert heatmap.shape[0] == res and heatmap.shape[1] == res |
|
target_map = np.zeros((res, res)) |
|
gazex = gt_gazex * res |
|
gazey = gt_gazey * res |
|
ul = [max(0, int(gazex - 3 * sigma)), max(0, int(gazey - 3 * sigma))] |
|
br = [min(int(gazex + 3 * sigma + 1), res-1), min(int(gazey + 3 * sigma + 1), res-1)] |
|
target_map[ul[1]:br[1], ul[0]:br[0]] = 1 |
|
auc = roc_auc_score(target_map.flatten(), heatmap.cpu().flatten()) |
|
return auc |
|
|
|
|
|
def vat_l2(heatmap, gt_gazex, gt_gazey): |
|
argmax = heatmap.flatten().argmax().item() |
|
pred_y, pred_x = np.unravel_index(argmax, (64, 64)) |
|
pred_x = pred_x / 64. |
|
pred_y = pred_y / 64. |
|
|
|
l2 = np.sqrt((pred_x - gt_gazex)**2 + (pred_y - gt_gazey)**2) |
|
|
|
return l2 |
|
|
|
|
|
@torch.no_grad() |
|
def main(): |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
print("Running on {}".format(device)) |
|
|
|
model, transform = get_gazelle_model(args.model_name) |
|
model.load_gazelle_state_dict(torch.load(args.ckpt_path, weights_only=True)) |
|
model.to(device) |
|
model.eval() |
|
|
|
dataset = VideoAttentionTarget(args.data_path, transform) |
|
dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, collate_fn=collate) |
|
|
|
aucs = [] |
|
l2s = [] |
|
inout_preds = [] |
|
inout_gts = [] |
|
|
|
for _, (images, bboxes, gazex, gazey, inout) in tqdm(enumerate(dataloader), desc="Evaluating", total=len(dataloader)): |
|
preds = model.forward({"images": images.to(device), "bboxes": bboxes}) |
|
|
|
|
|
for i in range(images.shape[0]): |
|
for j in range(len(bboxes[i])): |
|
if inout[i][j] == 1: |
|
auc = vat_auc(preds['heatmap'][i][j], gazex[i][j][0], gazey[i][j][0]) |
|
l2 = vat_l2(preds['heatmap'][i][j], gazex[i][j][0], gazey[i][j][0]) |
|
aucs.append(auc) |
|
l2s.append(l2) |
|
inout_preds.append(preds['inout'][i][j].item()) |
|
inout_gts.append(inout[i][j]) |
|
|
|
|
|
print("AUC: {}".format(np.array(aucs).mean())) |
|
print("Avg L2: {}".format(np.array(l2s).mean())) |
|
print("Inout AP: {}".format(average_precision_score(inout_gts, inout_preds))) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |