soiz1 commited on
Commit
9a321f6
·
verified ·
1 Parent(s): f0965b5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +452 -60
app.py CHANGED
@@ -1,69 +1,461 @@
 
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
2
 
3
- # 画像とMP3の情報
4
- image_data = {
5
- "sikokumetan": {
6
- "webp": "default/sikokumetan.webp",
7
- "mp3": "default/sikokumetan.mp3"
8
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
- def on_image_select(image_name):
12
- # 画像が選択されたとき、対応するMP3ファイルを返す
13
- return image_data[image_name]["mp3"]
14
 
15
- def voice_conversion(source_audio, reference_audio, steps, length_adjustment, cfg, use_f0_model, auto_f0, pitch_shift):
16
- # 音声変換のロジック(仮の関数)
17
- pass
18
 
19
- if __name__ == "__main__":
20
- description = ("Zero-shot音声変換モデル(学習不要)。ローカルでの利用方法は[GitHubリポジトリ](https://github.com/Plachtaa/seed-vc)をご覧ください。"
21
- "参考音声が25秒を超える場合、自動的に25秒にクリップされます。"
22
- "また、元音声と参考音声の合計時間が30秒を超える場合、元音声は分割処理されます。")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
- # 入力欄の定義
25
- inputs = [
26
- gr.Audio(type="filepath", label="元音声"),
27
- gr.Audio(type="filepath", label="参考音声"),
28
- gr.Slider(minimum=1, maximum=200, value=10, step=1, label="拡散ステップ数", info="デフォルトは10、50~100が最適な品質"),
29
- gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="長さ調整", info="1.0未満で速度を上げ、1.0以上で速度を遅くします"),
30
- gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="推論CFG率", info="わずかな影響があります"),
31
- gr.Checkbox(label="F0条件付きモデルを使用", value=False, info="歌声変換には必須です"),
32
- gr.Checkbox(label="F0自動調整", value=True, info="F0をおおよそ調整して目標音声に合わせます。F0条件付きモデル使用時にのみ有効です"),
33
- gr.Slider(label='音程変換', minimum=-24, maximum=24, step=1, value=0, info="半音単位の音程変換。F0条件付きモデル使用時にのみ有効です"),
34
- ]
35
-
36
- examples = [["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, False, True, 0],
37
- ["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7, True, True, 0],
38
- ["examples/source/Wiz Khalifa,Charlie Puth - See You Again [vocals]_[cut_28sec].wav",
39
- "examples/reference/teio_0.wav", 100, 1.0, 0.7, True, False, 0],
40
- ["examples/source/TECHNOPOLIS - 2085 [vocals]_[cut_14sec].wav",
41
- "examples/reference/trump_0.wav", 50, 1.0, 0.7, True, False, -12],
42
- ]
43
-
44
- outputs = [gr.Audio(label="ストリーム出力音声", streaming=True, format='mp3'),
45
- gr.Audio(label="完全出力音声", streaming=False, format='wav')]
46
-
47
- # ギャラリーに渡す画像のパスリスト
48
- gallery_images = [image_data["sikokumetan"]["webp"]] # 画像のファイルパスを直接渡す
49
-
50
- # ギャラリーを追加
51
- gallery = gr.Gallery(
52
- value=gallery_images,
53
- label="選択した画像に基づく参考音声",
54
- elem_id="image_gallery",
55
- interactive=True,
56
- grid=2 # 画像を2列に並べる
57
  )
58
 
59
- # ギャラリーの選択時にMP3ファイルを更新する処理
60
- gallery.change(fn=on_image_select, inputs=gallery, outputs=inputs[1]) # 参考音声を更新
61
-
62
- gr.Interface(fn=voice_conversion,
63
- description=description,
64
- inputs=inputs,
65
- outputs=outputs,
66
- title="Seed Voice Conversion",
67
- examples=examples,
68
- cache_examples=False,
69
- ).launch()
 
1
+ import os
2
+ import spaces
3
  import gradio as gr
4
+ import torch
5
+ import torchaudio
6
+ import librosa
7
+ from modules.commons import build_model, load_checkpoint, recursive_munch
8
+ import yaml
9
+ from hf_utils import load_custom_model_from_hf
10
+ import numpy as np
11
+ from pydub import AudioSegment
12
 
13
+ # Load model and configuration
14
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
+
16
+ dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
17
+ "DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth",
18
+ "config_dit_mel_seed_uvit_whisper_small_wavenet.yml")
19
+ # dit_checkpoint_path = "E:/DiT_epoch_00018_step_801000.pth"
20
+ # dit_config_path = "configs/config_dit_mel_seed_uvit_whisper_small_encoder_wavenet.yml"
21
+ config = yaml.safe_load(open(dit_config_path, 'r'))
22
+ model_params = recursive_munch(config['model_params'])
23
+ model = build_model(model_params, stage='DiT')
24
+ hop_length = config['preprocess_params']['spect_params']['hop_length']
25
+ sr = config['preprocess_params']['sr']
26
+
27
+ # Load checkpoints
28
+ model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path,
29
+ load_only_params=True, ignore_modules=[], is_distributed=False)
30
+ for key in model:
31
+ model[key].eval()
32
+ model[key].to(device)
33
+ model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
34
+
35
+ # Load additional modules
36
+ from modules.campplus.DTDNN import CAMPPlus
37
+
38
+ campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None)
39
+ campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
40
+ campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu"))
41
+ campplus_model.eval()
42
+ campplus_model.to(device)
43
+
44
+ from modules.bigvgan import bigvgan
45
+
46
+ bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False)
47
+
48
+ # remove weight norm in the model and set to eval mode
49
+ bigvgan_model.remove_weight_norm()
50
+ bigvgan_model = bigvgan_model.eval().to(device)
51
+
52
+ ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')
53
+
54
+ codec_config = yaml.safe_load(open(config_path))
55
+ codec_model_params = recursive_munch(codec_config['model_params'])
56
+ codec_encoder = build_model(codec_model_params, stage="codec")
57
+
58
+ ckpt_params = torch.load(ckpt_path, map_location="cpu")
59
+
60
+ for key in codec_encoder:
61
+ codec_encoder[key].load_state_dict(ckpt_params[key], strict=False)
62
+ _ = [codec_encoder[key].eval() for key in codec_encoder]
63
+ _ = [codec_encoder[key].to(device) for key in codec_encoder]
64
+
65
+ # whisper
66
+ from transformers import AutoFeatureExtractor, WhisperModel
67
+
68
+ whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer,
69
+ 'whisper_name') else "openai/whisper-small"
70
+ whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(device)
71
+ del whisper_model.decoder
72
+ whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)
73
+
74
+ # Generate mel spectrograms
75
+ mel_fn_args = {
76
+ "n_fft": config['preprocess_params']['spect_params']['n_fft'],
77
+ "win_size": config['preprocess_params']['spect_params']['win_length'],
78
+ "hop_size": config['preprocess_params']['spect_params']['hop_length'],
79
+ "num_mels": config['preprocess_params']['spect_params']['n_mels'],
80
+ "sampling_rate": sr,
81
+ "fmin": 0,
82
+ "fmax": None,
83
+ "center": False
84
  }
85
+ from modules.audio import mel_spectrogram
86
+
87
+ to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
88
+
89
+ # f0 conditioned model
90
+ dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
91
+ "DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema.pth",
92
+ "config_dit_mel_seed_uvit_whisper_base_f0_44k.yml")
93
+
94
+ config = yaml.safe_load(open(dit_config_path, 'r'))
95
+ model_params = recursive_munch(config['model_params'])
96
+ model_f0 = build_model(model_params, stage='DiT')
97
+ hop_length = config['preprocess_params']['spect_params']['hop_length']
98
+ sr = config['preprocess_params']['sr']
99
+
100
+ # Load checkpoints
101
+ model_f0, _, _, _ = load_checkpoint(model_f0, None, dit_checkpoint_path,
102
+ load_only_params=True, ignore_modules=[], is_distributed=False)
103
+ for key in model_f0:
104
+ model_f0[key].eval()
105
+ model_f0[key].to(device)
106
+ model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
107
+
108
+ # f0 extractor
109
+ from modules.rmvpe import RMVPE
110
+
111
+ model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
112
+ rmvpe = RMVPE(model_path, is_half=False, device=device)
113
+
114
+ mel_fn_args_f0 = {
115
+ "n_fft": config['preprocess_params']['spect_params']['n_fft'],
116
+ "win_size": config['preprocess_params']['spect_params']['win_length'],
117
+ "hop_size": config['preprocess_params']['spect_params']['hop_length'],
118
+ "num_mels": config['preprocess_params']['spect_params']['n_mels'],
119
+ "sampling_rate": sr,
120
+ "fmin": 0,
121
+ "fmax": None,
122
+ "center": False
123
+ }
124
+ to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0)
125
+ bigvgan_44k_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x', use_cuda_kernel=False)
126
+
127
+ # remove weight norm in the model and set to eval mode
128
+ bigvgan_44k_model.remove_weight_norm()
129
+ bigvgan_44k_model = bigvgan_44k_model.eval().to(device)
130
+
131
+ def adjust_f0_semitones(f0_sequence, n_semitones):
132
+ factor = 2 ** (n_semitones / 12)
133
+ return f0_sequence * factor
134
+
135
+ def crossfade(chunk1, chunk2, overlap):
136
+ fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2
137
+ fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2
138
+ chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out
139
+ return chunk2
140
+
141
+ # streaming and chunk processing related params
142
+ bitrate = "320k"
143
+ overlap_frame_len = 16
144
+ @spaces.GPU
145
+ @torch.no_grad()
146
+ @torch.inference_mode()
147
+ def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, f0_condition, auto_f0_adjust, pitch_shift):
148
+ inference_module = model if not f0_condition else model_f0
149
+ mel_fn = to_mel if not f0_condition else to_mel_f0
150
+ bigvgan_fn = bigvgan_model if not f0_condition else bigvgan_44k_model
151
+ sr = 22050 if not f0_condition else 44100
152
+ hop_length = 256 if not f0_condition else 512
153
+ max_context_window = sr // hop_length * 30
154
+ overlap_wave_len = overlap_frame_len * hop_length
155
+ # Load audio
156
+ source_audio = librosa.load(source, sr=sr)[0]
157
+ ref_audio = librosa.load(target, sr=sr)[0]
158
+
159
+ # Process audio
160
+ source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(device)
161
+ ref_audio = torch.tensor(ref_audio[:sr * 25]).unsqueeze(0).float().to(device)
162
+
163
+ # Resample
164
+ ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
165
+ converted_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
166
+ # if source audio less than 30 seconds, whisper can handle in one forward
167
+ if converted_waves_16k.size(-1) <= 16000 * 30:
168
+ alt_inputs = whisper_feature_extractor([converted_waves_16k.squeeze(0).cpu().numpy()],
169
+ return_tensors="pt",
170
+ return_attention_mask=True,
171
+ sampling_rate=16000)
172
+ alt_input_features = whisper_model._mask_input_features(
173
+ alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
174
+ alt_outputs = whisper_model.encoder(
175
+ alt_input_features.to(whisper_model.encoder.dtype),
176
+ head_mask=None,
177
+ output_attentions=False,
178
+ output_hidden_states=False,
179
+ return_dict=True,
180
+ )
181
+ S_alt = alt_outputs.last_hidden_state.to(torch.float32)
182
+ S_alt = S_alt[:, :converted_waves_16k.size(-1) // 320 + 1]
183
+ else:
184
+ overlapping_time = 5 # 5 seconds
185
+ S_alt_list = []
186
+ buffer = None
187
+ traversed_time = 0
188
+ while traversed_time < converted_waves_16k.size(-1):
189
+ if buffer is None: # first chunk
190
+ chunk = converted_waves_16k[:, traversed_time:traversed_time + 16000 * 30]
191
+ else:
192
+ chunk = torch.cat([buffer, converted_waves_16k[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)]], dim=-1)
193
+ alt_inputs = whisper_feature_extractor([chunk.squeeze(0).cpu().numpy()],
194
+ return_tensors="pt",
195
+ return_attention_mask=True,
196
+ sampling_rate=16000)
197
+ alt_input_features = whisper_model._mask_input_features(
198
+ alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
199
+ alt_outputs = whisper_model.encoder(
200
+ alt_input_features.to(whisper_model.encoder.dtype),
201
+ head_mask=None,
202
+ output_attentions=False,
203
+ output_hidden_states=False,
204
+ return_dict=True,
205
+ )
206
+ S_alt = alt_outputs.last_hidden_state.to(torch.float32)
207
+ S_alt = S_alt[:, :chunk.size(-1) // 320 + 1]
208
+ if traversed_time == 0:
209
+ S_alt_list.append(S_alt)
210
+ else:
211
+ S_alt_list.append(S_alt[:, 50 * overlapping_time:])
212
+ buffer = chunk[:, -16000 * overlapping_time:]
213
+ traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time
214
+ S_alt = torch.cat(S_alt_list, dim=1)
215
+
216
+ ori_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
217
+ ori_inputs = whisper_feature_extractor([ori_waves_16k.squeeze(0).cpu().numpy()],
218
+ return_tensors="pt",
219
+ return_attention_mask=True)
220
+ ori_input_features = whisper_model._mask_input_features(
221
+ ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device)
222
+ with torch.no_grad():
223
+ ori_outputs = whisper_model.encoder(
224
+ ori_input_features.to(whisper_model.encoder.dtype),
225
+ head_mask=None,
226
+ output_attentions=False,
227
+ output_hidden_states=False,
228
+ return_dict=True,
229
+ )
230
+ S_ori = ori_outputs.last_hidden_state.to(torch.float32)
231
+ S_ori = S_ori[:, :ori_waves_16k.size(-1) // 320 + 1]
232
 
233
+ mel = mel_fn(source_audio.to(device).float())
234
+ mel2 = mel_fn(ref_audio.to(device).float())
 
235
 
236
+ target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
237
+ target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
 
238
 
239
+ feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k,
240
+ num_mel_bins=80,
241
+ dither=0,
242
+ sample_frequency=16000)
243
+ feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
244
+ style2 = campplus_model(feat2.unsqueeze(0))
245
+
246
+ if f0_condition:
247
+ F0_ori = rmvpe.infer_from_audio(ref_waves_16k[0], thred=0.5)
248
+ F0_alt = rmvpe.infer_from_audio(converted_waves_16k[0], thred=0.5)
249
+
250
+ F0_ori = torch.from_numpy(F0_ori).to(device)[None]
251
+ F0_alt = torch.from_numpy(F0_alt).to(device)[None]
252
+
253
+ voiced_F0_ori = F0_ori[F0_ori > 1]
254
+ voiced_F0_alt = F0_alt[F0_alt > 1]
255
+
256
+ log_f0_alt = torch.log(F0_alt + 1e-5)
257
+ voiced_log_f0_ori = torch.log(voiced_F0_ori + 1e-5)
258
+ voiced_log_f0_alt = torch.log(voiced_F0_alt + 1e-5)
259
+ median_log_f0_ori = torch.median(voiced_log_f0_ori)
260
+ median_log_f0_alt = torch.median(voiced_log_f0_alt)
261
+
262
+ # shift alt log f0 level to ori log f0 level
263
+ shifted_log_f0_alt = log_f0_alt.clone()
264
+ if auto_f0_adjust:
265
+ shifted_log_f0_alt[F0_alt > 1] = log_f0_alt[F0_alt > 1] - median_log_f0_alt + median_log_f0_ori
266
+ shifted_f0_alt = torch.exp(shifted_log_f0_alt)
267
+ if pitch_shift != 0:
268
+ shifted_f0_alt[F0_alt > 1] = adjust_f0_semitones(shifted_f0_alt[F0_alt > 1], pitch_shift)
269
+ else:
270
+ F0_ori = None
271
+ F0_alt = None
272
+ shifted_f0_alt = None
273
+
274
+ # Length regulation
275
+ cond, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(S_alt, ylens=target_lengths, n_quantizers=3, f0=shifted_f0_alt)
276
+ prompt_condition, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=3, f0=F0_ori)
277
+
278
+ max_source_window = max_context_window - mel2.size(2)
279
+ # split source condition (cond) into chunks
280
+ processed_frames = 0
281
+ generated_wave_chunks = []
282
+ # generate chunk by chunk and stream the output
283
+ while processed_frames < cond.size(1):
284
+ chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
285
+ is_last_chunk = processed_frames + max_source_window >= cond.size(1)
286
+ cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
287
+ with torch.autocast(device_type='cuda', dtype=torch.float16):
288
+ # Voice Conversion
289
+ vc_target = inference_module.cfm.inference(cat_condition,
290
+ torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
291
+ mel2, style2, None, diffusion_steps,
292
+ inference_cfg_rate=inference_cfg_rate)
293
+ vc_target = vc_target[:, :, mel2.size(-1):]
294
+ vc_wave = bigvgan_fn(vc_target.float())[0]
295
+ if processed_frames == 0:
296
+ if is_last_chunk:
297
+ output_wave = vc_wave[0].cpu().numpy()
298
+ generated_wave_chunks.append(output_wave)
299
+ output_wave = (output_wave * 32768.0).astype(np.int16)
300
+ mp3_bytes = AudioSegment(
301
+ output_wave.tobytes(), frame_rate=sr,
302
+ sample_width=output_wave.dtype.itemsize, channels=1
303
+ ).export(format="mp3", bitrate=bitrate).read()
304
+ yield mp3_bytes, (sr, np.concatenate(generated_wave_chunks))
305
+ break
306
+ output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy()
307
+ generated_wave_chunks.append(output_wave)
308
+ previous_chunk = vc_wave[0, -overlap_wave_len:]
309
+ processed_frames += vc_target.size(2) - overlap_frame_len
310
+ output_wave = (output_wave * 32768.0).astype(np.int16)
311
+ mp3_bytes = AudioSegment(
312
+ output_wave.tobytes(), frame_rate=sr,
313
+ sample_width=output_wave.dtype.itemsize, channels=1
314
+ ).export(format="mp3", bitrate=bitrate).read()
315
+ yield mp3_bytes, None
316
+ elif is_last_chunk:
317
+ output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len)
318
+ generated_wave_chunks.append(output_wave)
319
+ processed_frames += vc_target.size(2) - overlap_frame_len
320
+ output_wave = (output_wave * 32768.0).astype(np.int16)
321
+ mp3_bytes = AudioSegment(
322
+ output_wave.tobytes(), frame_rate=sr,
323
+ sample_width=output_wave.dtype.itemsize, channels=1
324
+ ).export(format="mp3", bitrate=bitrate).read()
325
+ yield mp3_bytes, (sr, np.concatenate(generated_wave_chunks))
326
+ break
327
+ else:
328
+ output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0, :-overlap_wave_len].cpu().numpy(), overlap_wave_len)
329
+ generated_wave_chunks.append(output_wave)
330
+ previous_chunk = vc_wave[0, -overlap_wave_len:]
331
+ processed_frames += vc_target.size(2) - overlap_frame_len
332
+ output_wave = (output_wave * 32768.0).astype(np.int16)
333
+ mp3_bytes = AudioSegment(
334
+ output_wave.tobytes(), frame_rate=sr,
335
+ sample_width=output_wave.dtype.itemsize, channels=1
336
+ ).export(format="mp3", bitrate=bitrate).read()
337
+ yield mp3_bytes, None
338
+
339
+
340
+ import gradio as gr
341
+ from g4f.client import Client
342
+ import markdown2 # より豊富なマークダウン対応
343
+ import base64
344
+ from io import BytesIO
345
+ import json
346
+
347
+ client = Client()
348
+
349
+ def format_output(text):
350
+ """
351
+ チャットGPTスタイルのマークダウン形式に対応するためのフォーマット関数
352
+ """
353
+ return markdown2.markdown(text, extras=[
354
+ "fenced-code-blocks",
355
+ "tables",
356
+ "task_list",
357
+ "strike",
358
+ "spoiler",
359
+ "markdown-in-html"
360
+ ])
361
+
362
+ def image_to_data_url(image):
363
+ """
364
+ 画像をBase64形式のdataURLに変換する関数
365
+ """
366
+ buffered = BytesIO()
367
+ image.save(buffered, format="PNG")
368
+ img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
369
+ return f"data:image/png;base64,{img_str}"
370
+
371
+ def respond(message, history, system_message, max_tokens, temperature, top_p, model_choice, web_search, image=None):
372
+ # システムメッセージを先頭に追加
373
+ messages = [{"role": "system", "content": system_message}]
374
+
375
+ # これまでの会話履歴を追加
376
+ for user_msg, assistant_msg in history:
377
+ if user_msg:
378
+ messages.append({"role": "user", "content": user_msg})
379
+ if assistant_msg:
380
+ messages.append({"role": "assistant", "content": assistant_msg})
381
+
382
+ # 今回のユーザーメッセージを追加
383
+ if image:
384
+ message += f"\n![image]({image})" # 画像をマークダウンで追加
385
+ messages.append({"role": "user", "content": message})
386
+
387
+ # API 呼び出し
388
+ response = client.chat.completions.create(
389
+ model=model_choice,
390
+ messages=messages,
391
+ max_tokens=max_tokens,
392
+ temperature=temperature,
393
+ top_p=top_p,
394
+ web_search=web_search
395
+ )
396
+
397
+ formatted_response = format_output(response.choices[0].message.content)
398
+ return formatted_response
399
+
400
+ def chat(message, history, system_message, max_tokens, temperature, top_p, model_choice, web_search, image):
401
+ if message.strip() == "" and not image:
402
+ return "", history, history
403
+ if image:
404
+ image_data_url = image_to_data_url(image)
405
+ else:
406
+ image_data_url = None
407
+
408
+ print("メッセージ送信直後の履歴:")
409
+ print(json.dumps(history, ensure_ascii=False, indent=2)) # メッセージ送信前の履歴をJSONで表示
410
+
411
+ response = respond(message, history, system_message, max_tokens, temperature, top_p, model_choice, web_search, image_data_url)
412
+ history = history + [(message, response)]
413
+
414
+ print("AIの回答直後の履歴:")
415
+ print(json.dumps(history, ensure_ascii=False, indent=2)) # AIの回答後の履歴をJSONで表示
416
+
417
+ # 入力欄をクリアして、更新済みのチャット履歴と状態を返す
418
+ return "", history, history
419
+
420
+ with gr.Blocks() as demo:
421
+ with gr.Row():
422
+ # 左側のカラム:入力欄と各オプションを配置
423
+ with gr.Column():
424
+ # オプション(システムメッセージや各種パラメータ)
425
+ system_message = gr.Textbox(
426
+ value="あなたは日本語しか話せません。あなたは最新の医療支援AIです。薬の紹介、薬の提案、薬の作成など、さまざまなタスクに答えます。また、新しい薬を開発する際は、既存のものに頼らずに画期的なアイデアを出します。",
427
+ label="システムメッセージ"
428
+ )
429
+ max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="トークン制限")
430
+ temperature = gr.Slider(minimum=0.1, maximum=4.0, value=2, step=0.1, label="Temperature (数値が大きいほど様々な回答をします。)")
431
+ top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling) (数値が低いと回答候補が上位のみになります。)")
432
+ model_choice = gr.Radio(choices=["gpt-4o-mini", "o3-mini"], value="gpt-4o-mini", label="モデル選択")
433
+ web_search = gr.Checkbox(value=True, label="WEB検索")
434
+
435
+ # チャット入力欄と送信ボタン
436
+ chatbot_input = gr.Textbox(show_label=False, placeholder="ここにメッセージを入力してください...", lines=2)
437
+ image_input = gr.Image(type="pil", label="画像をアップロード", visible=False) # 画像アップロード
438
+ submit_btn = gr.Button("送信")
439
+
440
+ # 右側のカラム:チャットの履歴を表示
441
+ with gr.Column():
442
+ chat_history_display = gr.Chatbot(label="チャット履歴")
443
+
444
+ # 会話の状態(履歴)を保持する State コンポーネント
445
+ state = gr.State([])
446
+
447
+ # 送信ボタン押下時の挙動
448
+ submit_btn.click(
449
+ chat,
450
+ inputs=[chatbot_input, state, system_message, max_tokens, temperature, top_p, model_choice, web_search, image_input],
451
+ outputs=[chatbot_input, chat_history_display, state]
452
+ )
453
 
454
+ # エンターキーでの送信にも対応
455
+ chatbot_input.submit(
456
+ chat,
457
+ inputs=[chatbot_input, state, system_message, max_tokens, temperature, top_p, model_choice, web_search, image_input],
458
+ outputs=[chatbot_input, chat_history_display, state]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
459
  )
460
 
461
+ demo.launch()