File size: 3,051 Bytes
2f5f13b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import torch
import json
import os

version_config_paths = [
    os.path.join("48000.json"),
    os.path.join("40000.json"),
    os.path.join("44100.json"),
    os.path.join("32000.json"),
]


def singleton(cls):
    instances = {}

    def get_instance(*args, **kwargs):
        if cls not in instances:
            instances[cls] = cls(*args, **kwargs)
        return instances[cls]

    return get_instance


@singleton
class Config:
    def __init__(self):
        self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
        self.gpu_name = (
            torch.cuda.get_device_name(int(self.device.split(":")[-1]))
            if self.device.startswith("cuda")
            else None
        )
        self.json_config = self.load_config_json()
        self.gpu_mem = None
        self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()

    def load_config_json(self):
        configs = {}
        for config_file in version_config_paths:
            config_path = os.path.join("rvc", "configs", config_file)
            with open(config_path, "r") as f:
                configs[config_file] = json.load(f)
        return configs

    def device_config(self):
        if self.device.startswith("cuda"):
            self.set_cuda_config()
        else:
            self.device = "cpu"

        # Configuration for 6GB GPU memory
        x_pad, x_query, x_center, x_max = (1, 6, 38, 41)
        if self.gpu_mem is not None and self.gpu_mem <= 4:
            # Configuration for 5GB GPU memory
            x_pad, x_query, x_center, x_max = (1, 5, 30, 32)

        return x_pad, x_query, x_center, x_max

    def set_cuda_config(self):
        i_device = int(self.device.split(":")[-1])
        self.gpu_name = torch.cuda.get_device_name(i_device)
        self.gpu_mem = torch.cuda.get_device_properties(i_device).total_memory // (
            1024**3
        )


def max_vram_gpu(gpu):
    if torch.cuda.is_available():
        gpu_properties = torch.cuda.get_device_properties(gpu)
        total_memory_gb = round(gpu_properties.total_memory / 1024 / 1024 / 1024)
        return total_memory_gb
    else:
        return "8"


def get_gpu_info():
    ngpu = torch.cuda.device_count()
    gpu_infos = []
    if torch.cuda.is_available() or ngpu != 0:
        for i in range(ngpu):
            gpu_name = torch.cuda.get_device_name(i)
            mem = int(
                torch.cuda.get_device_properties(i).total_memory / 1024 / 1024 / 1024
                + 0.4
            )
            gpu_infos.append(f"{i}: {gpu_name} ({mem} GB)")
    if len(gpu_infos) > 0:
        gpu_info = "\n".join(gpu_infos)
    else:
        gpu_info = "Unfortunately, there is no compatible GPU available to support your training."
    return gpu_info


def get_number_of_gpus():
    if torch.cuda.is_available():
        num_gpus = torch.cuda.device_count()
        return "-".join(map(str, range(num_gpus)))
    else:
        return "-"