Spaces:
Running
Running
File size: 6,458 Bytes
2f5f13b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import torch
from torch.utils.checkpoint import checkpoint
from torch.nn.utils.parametrizations import spectral_norm, weight_norm
from rvc.lib.algorithm.commons import get_padding
from rvc.lib.algorithm.residuals import LRELU_SLOPE
class MultiPeriodDiscriminator(torch.nn.Module):
"""
Multi-period discriminator.
This class implements a multi-period discriminator, which is used to
discriminate between real and fake audio signals. The discriminator
is composed of a series of convolutional layers that are applied to
the input signal at different periods.
Args:
use_spectral_norm (bool): Whether to use spectral normalization.
Defaults to False.
"""
def __init__(self, use_spectral_norm: bool = False, checkpointing: bool = False):
super(MultiPeriodDiscriminator, self).__init__()
periods = [2, 3, 5, 7, 11, 17, 23, 37]
self.checkpointing = checkpointing
self.discriminators = torch.nn.ModuleList(
[
DiscriminatorS(
use_spectral_norm=use_spectral_norm, checkpointing=checkpointing
)
]
+ [
DiscriminatorP(
p, use_spectral_norm=use_spectral_norm, checkpointing=checkpointing
)
for p in periods
]
)
def forward(self, y, y_hat):
y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], []
for d in self.discriminators:
if self.training and self.checkpointing:
def forward_discriminator(d, y, y_hat):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
return y_d_r, fmap_r, y_d_g, fmap_g
y_d_r, fmap_r, y_d_g, fmap_g = checkpoint(
forward_discriminator, d, y, y_hat, use_reentrant=False
)
else:
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
y_d_gs.append(y_d_g)
fmap_rs.append(fmap_r)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class DiscriminatorS(torch.nn.Module):
"""
Discriminator for the short-term component.
This class implements a discriminator for the short-term component
of the audio signal. The discriminator is composed of a series of
convolutional layers that are applied to the input signal.
"""
def __init__(self, use_spectral_norm: bool = False, checkpointing: bool = False):
super(DiscriminatorS, self).__init__()
self.checkpointing = checkpointing
norm_f = spectral_norm if use_spectral_norm else weight_norm
self.convs = torch.nn.ModuleList(
[
norm_f(torch.nn.Conv1d(1, 16, 15, 1, padding=7)),
norm_f(torch.nn.Conv1d(16, 64, 41, 4, groups=4, padding=20)),
norm_f(torch.nn.Conv1d(64, 256, 41, 4, groups=16, padding=20)),
norm_f(torch.nn.Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
norm_f(torch.nn.Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
norm_f(torch.nn.Conv1d(1024, 1024, 5, 1, padding=2)),
]
)
self.conv_post = norm_f(torch.nn.Conv1d(1024, 1, 3, 1, padding=1))
self.lrelu = torch.nn.LeakyReLU(LRELU_SLOPE, inplace=True)
def forward(self, x):
fmap = []
for conv in self.convs:
if self.training and self.checkpointing:
x = checkpoint(conv, x, use_reentrant=False)
x = checkpoint(self.lrelu, x, use_reentrant=False)
else:
x = self.lrelu(conv(x))
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class DiscriminatorP(torch.nn.Module):
"""
Discriminator for the long-term component.
This class implements a discriminator for the long-term component
of the audio signal. The discriminator is composed of a series of
convolutional layers that are applied to the input signal at a given
period.
Args:
period (int): Period of the discriminator.
kernel_size (int): Kernel size of the convolutional layers. Defaults to 5.
stride (int): Stride of the convolutional layers. Defaults to 3.
use_spectral_norm (bool): Whether to use spectral normalization. Defaults to False.
"""
def __init__(
self,
period: int,
kernel_size: int = 5,
stride: int = 3,
use_spectral_norm: bool = False,
checkpointing: bool = False,
):
super(DiscriminatorP, self).__init__()
self.checkpointing = checkpointing
self.period = period
norm_f = spectral_norm if use_spectral_norm else weight_norm
in_channels = [1, 32, 128, 512, 1024]
out_channels = [32, 128, 512, 1024, 1024]
self.convs = torch.nn.ModuleList(
[
norm_f(
torch.nn.Conv2d(
in_ch,
out_ch,
(kernel_size, 1),
(stride, 1),
padding=(get_padding(kernel_size, 1), 0),
)
)
for in_ch, out_ch in zip(in_channels, out_channels)
]
)
self.conv_post = norm_f(torch.nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
self.lrelu = torch.nn.LeakyReLU(LRELU_SLOPE, inplace=True)
def forward(self, x):
fmap = []
b, c, t = x.shape
if t % self.period != 0:
n_pad = self.period - (t % self.period)
x = torch.nn.functional.pad(x, (0, n_pad), "reflect")
x = x.view(b, c, -1, self.period)
for conv in self.convs:
if self.training and self.checkpointing:
x = checkpoint(conv, x, use_reentrant=False)
x = checkpoint(self.lrelu, x, use_reentrant=False)
else:
x = self.lrelu(conv(x))
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
|