File size: 9,248 Bytes
2f5f13b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import torch
import numpy as np
from torch.nn.utils import remove_weight_norm
from torch.nn.utils.parametrizations import weight_norm
from typing import Optional

from rvc.lib.algorithm.residuals import LRELU_SLOPE, ResBlock
from rvc.lib.algorithm.commons import init_weights


class HiFiGANGenerator(torch.nn.Module):
    """

    HiFi-GAN Generator module for audio synthesis.



    This module implements the generator part of the HiFi-GAN architecture,

    which uses transposed convolutions for upsampling and residual blocks for

    refining the audio output. It can also incorporate global conditioning.



    Args:

        initial_channel (int): Number of input channels to the initial convolutional layer.

        resblock_kernel_sizes (list): List of kernel sizes for the residual blocks.

        resblock_dilation_sizes (list): List of lists of dilation rates for the residual blocks, corresponding to each kernel size.

        upsample_rates (list): List of upsampling factors for each upsampling layer.

        upsample_initial_channel (int): Number of output channels from the initial convolutional layer, which is also the input to the first upsampling layer.

        upsample_kernel_sizes (list): List of kernel sizes for the transposed convolutional layers used for upsampling.

        gin_channels (int, optional): Number of input channels for the global conditioning. If 0, no global conditioning is used. Defaults to 0.

    """

    def __init__(

        self,

        initial_channel: int,

        resblock_kernel_sizes: list,

        resblock_dilation_sizes: list,

        upsample_rates: list,

        upsample_initial_channel: int,

        upsample_kernel_sizes: list,

        gin_channels: int = 0,

    ):
        super(HiFiGANGenerator, self).__init__()
        self.num_kernels = len(resblock_kernel_sizes)
        self.num_upsamples = len(upsample_rates)
        self.conv_pre = torch.nn.Conv1d(
            initial_channel, upsample_initial_channel, 7, 1, padding=3
        )

        self.ups = torch.nn.ModuleList()
        self.resblocks = torch.nn.ModuleList()

        for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
            self.ups.append(
                weight_norm(
                    torch.nn.ConvTranspose1d(
                        upsample_initial_channel // (2**i),
                        upsample_initial_channel // (2 ** (i + 1)),
                        k,
                        u,
                        padding=(k - u) // 2,
                    )
                )
            )
            ch = upsample_initial_channel // (2 ** (i + 1))
            for j, (k, d) in enumerate(
                zip(resblock_kernel_sizes, resblock_dilation_sizes)
            ):
                self.resblocks.append(ResBlock(ch, k, d))

        self.conv_post = torch.nn.Conv1d(ch, 1, 7, 1, padding=3, bias=False)
        self.ups.apply(init_weights)

        if gin_channels != 0:
            self.cond = torch.nn.Conv1d(gin_channels, upsample_initial_channel, 1)

    def forward(self, x: torch.Tensor, g: Optional[torch.Tensor] = None):
        # new tensor
        x = self.conv_pre(x)

        if g is not None:
            # in-place call
            x += self.cond(g)

        for i in range(self.num_upsamples):
            # in-place call
            x = torch.nn.functional.leaky_relu_(x, LRELU_SLOPE)
            x = self.ups[i](x)
            xs = None
            for j in range(self.num_kernels):
                if xs is None:
                    xs = self.resblocks[i * self.num_kernels + j](x)
                else:
                    xs += self.resblocks[i * self.num_kernels + j](x)
            x = xs / self.num_kernels
        # in-place call
        x = torch.nn.functional.leaky_relu_(x)
        x = self.conv_post(x)
        # in-place call
        x = torch.tanh_(x)

        return x

    def __prepare_scriptable__(self):
        for l in self.ups_and_resblocks:
            for hook in l._forward_pre_hooks.values():
                if (
                    hook.__module__ == "torch.nn.utils.parametrizations.weight_norm"
                    and hook.__class__.__name__ == "WeightNorm"
                ):
                    torch.nn.utils.remove_weight_norm(l)
        return self

    def remove_weight_norm(self):
        for l in self.ups:
            remove_weight_norm(l)
        for l in self.resblocks:
            l.remove_weight_norm()


class SineGenerator(torch.nn.Module):
    """

    Sine wave generator with optional harmonic overtones and noise.



    This module generates sine waves for a fundamental frequency and its harmonics.

    It can also add Gaussian noise and apply a voiced/unvoiced mask.



    Args:

        sampling_rate (int): The sampling rate of the audio in Hz.

        num_harmonics (int, optional): The number of harmonic overtones to generate. Defaults to 0.

        sine_amplitude (float, optional): The amplitude of the sine wave components. Defaults to 0.1.

        noise_stddev (float, optional): The standard deviation of the additive Gaussian noise. Defaults to 0.003.

        voiced_threshold (float, optional): The threshold for the fundamental frequency (F0) to determine if a frame is voiced. Defaults to 0.0.

    """

    def __init__(

        self,

        sampling_rate: int,

        num_harmonics: int = 0,

        sine_amplitude: float = 0.1,

        noise_stddev: float = 0.003,

        voiced_threshold: float = 0.0,

    ):
        super(SineGenerator, self).__init__()
        self.sampling_rate = sampling_rate
        self.num_harmonics = num_harmonics
        self.sine_amplitude = sine_amplitude
        self.noise_stddev = noise_stddev
        self.voiced_threshold = voiced_threshold
        self.waveform_dim = self.num_harmonics + 1  # fundamental + harmonics

    def _compute_voiced_unvoiced(self, f0: torch.Tensor):
        """

        Generates a binary mask indicating voiced/unvoiced frames based on the fundamental frequency.



        Args:

            f0 (torch.Tensor): Fundamental frequency tensor of shape (batch_size, length).

        """
        uv_mask = (f0 > self.voiced_threshold).float()
        return uv_mask

    def _generate_sine_wave(self, f0: torch.Tensor, upsampling_factor: int):
        """

        Generates sine waves for the fundamental frequency and its harmonics.



        Args:

            f0 (torch.Tensor): Fundamental frequency tensor of shape (batch_size, length, 1).

            upsampling_factor (int): The factor by which to upsample the sine wave.

        """
        batch_size, length, _ = f0.shape

        # Create an upsampling grid
        upsampling_grid = torch.arange(
            1, upsampling_factor + 1, dtype=f0.dtype, device=f0.device
        )

        # Calculate phase increments
        phase_increments = (f0 / self.sampling_rate) * upsampling_grid
        phase_remainder = torch.fmod(phase_increments[:, :-1, -1:] + 0.5, 1.0) - 0.5
        cumulative_phase = phase_remainder.cumsum(dim=1).fmod(1.0).to(f0.dtype)
        phase_increments += torch.nn.functional.pad(
            cumulative_phase, (0, 0, 1, 0), mode="constant"
        )

        # Reshape to match the sine wave shape
        phase_increments = phase_increments.reshape(batch_size, -1, 1)

        # Scale for harmonics
        harmonic_scale = torch.arange(
            1, self.waveform_dim + 1, dtype=f0.dtype, device=f0.device
        ).reshape(1, 1, -1)
        phase_increments *= harmonic_scale

        # Add random phase offset (except for the fundamental)
        random_phase = torch.rand(1, 1, self.waveform_dim, device=f0.device)
        random_phase[..., 0] = 0  # Fundamental frequency has no random offset
        phase_increments += random_phase

        # Generate sine waves
        sine_waves = torch.sin(2 * np.pi * phase_increments)
        return sine_waves

    def forward(self, f0: torch.Tensor, upsampling_factor: int):
        with torch.no_grad():
            # Expand `f0` to include waveform dimensions
            f0 = f0.unsqueeze(-1)

            # Generate sine waves
            sine_waves = (
                self._generate_sine_wave(f0, upsampling_factor) * self.sine_amplitude
            )

            # Compute voiced/unvoiced mask
            voiced_mask = self._compute_voiced_unvoiced(f0)

            # Upsample voiced/unvoiced mask
            voiced_mask = torch.nn.functional.interpolate(
                voiced_mask.transpose(2, 1),
                scale_factor=float(upsampling_factor),
                mode="nearest",
            ).transpose(2, 1)

            # Compute noise amplitude
            noise_amplitude = voiced_mask * self.noise_stddev + (1 - voiced_mask) * (
                self.sine_amplitude / 3
            )

            # Add Gaussian noise
            noise = noise_amplitude * torch.randn_like(sine_waves)

            # Combine sine waves and noise
            sine_waveforms = sine_waves * voiced_mask + noise

        return sine_waveforms, voiced_mask, noise