Spaces:
Running
Running
File size: 9,248 Bytes
2f5f13b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import torch
import numpy as np
from torch.nn.utils import remove_weight_norm
from torch.nn.utils.parametrizations import weight_norm
from typing import Optional
from rvc.lib.algorithm.residuals import LRELU_SLOPE, ResBlock
from rvc.lib.algorithm.commons import init_weights
class HiFiGANGenerator(torch.nn.Module):
"""
HiFi-GAN Generator module for audio synthesis.
This module implements the generator part of the HiFi-GAN architecture,
which uses transposed convolutions for upsampling and residual blocks for
refining the audio output. It can also incorporate global conditioning.
Args:
initial_channel (int): Number of input channels to the initial convolutional layer.
resblock_kernel_sizes (list): List of kernel sizes for the residual blocks.
resblock_dilation_sizes (list): List of lists of dilation rates for the residual blocks, corresponding to each kernel size.
upsample_rates (list): List of upsampling factors for each upsampling layer.
upsample_initial_channel (int): Number of output channels from the initial convolutional layer, which is also the input to the first upsampling layer.
upsample_kernel_sizes (list): List of kernel sizes for the transposed convolutional layers used for upsampling.
gin_channels (int, optional): Number of input channels for the global conditioning. If 0, no global conditioning is used. Defaults to 0.
"""
def __init__(
self,
initial_channel: int,
resblock_kernel_sizes: list,
resblock_dilation_sizes: list,
upsample_rates: list,
upsample_initial_channel: int,
upsample_kernel_sizes: list,
gin_channels: int = 0,
):
super(HiFiGANGenerator, self).__init__()
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
self.conv_pre = torch.nn.Conv1d(
initial_channel, upsample_initial_channel, 7, 1, padding=3
)
self.ups = torch.nn.ModuleList()
self.resblocks = torch.nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(
weight_norm(
torch.nn.ConvTranspose1d(
upsample_initial_channel // (2**i),
upsample_initial_channel // (2 ** (i + 1)),
k,
u,
padding=(k - u) // 2,
)
)
)
ch = upsample_initial_channel // (2 ** (i + 1))
for j, (k, d) in enumerate(
zip(resblock_kernel_sizes, resblock_dilation_sizes)
):
self.resblocks.append(ResBlock(ch, k, d))
self.conv_post = torch.nn.Conv1d(ch, 1, 7, 1, padding=3, bias=False)
self.ups.apply(init_weights)
if gin_channels != 0:
self.cond = torch.nn.Conv1d(gin_channels, upsample_initial_channel, 1)
def forward(self, x: torch.Tensor, g: Optional[torch.Tensor] = None):
# new tensor
x = self.conv_pre(x)
if g is not None:
# in-place call
x += self.cond(g)
for i in range(self.num_upsamples):
# in-place call
x = torch.nn.functional.leaky_relu_(x, LRELU_SLOPE)
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
# in-place call
x = torch.nn.functional.leaky_relu_(x)
x = self.conv_post(x)
# in-place call
x = torch.tanh_(x)
return x
def __prepare_scriptable__(self):
for l in self.ups_and_resblocks:
for hook in l._forward_pre_hooks.values():
if (
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm"
and hook.__class__.__name__ == "WeightNorm"
):
torch.nn.utils.remove_weight_norm(l)
return self
def remove_weight_norm(self):
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
class SineGenerator(torch.nn.Module):
"""
Sine wave generator with optional harmonic overtones and noise.
This module generates sine waves for a fundamental frequency and its harmonics.
It can also add Gaussian noise and apply a voiced/unvoiced mask.
Args:
sampling_rate (int): The sampling rate of the audio in Hz.
num_harmonics (int, optional): The number of harmonic overtones to generate. Defaults to 0.
sine_amplitude (float, optional): The amplitude of the sine wave components. Defaults to 0.1.
noise_stddev (float, optional): The standard deviation of the additive Gaussian noise. Defaults to 0.003.
voiced_threshold (float, optional): The threshold for the fundamental frequency (F0) to determine if a frame is voiced. Defaults to 0.0.
"""
def __init__(
self,
sampling_rate: int,
num_harmonics: int = 0,
sine_amplitude: float = 0.1,
noise_stddev: float = 0.003,
voiced_threshold: float = 0.0,
):
super(SineGenerator, self).__init__()
self.sampling_rate = sampling_rate
self.num_harmonics = num_harmonics
self.sine_amplitude = sine_amplitude
self.noise_stddev = noise_stddev
self.voiced_threshold = voiced_threshold
self.waveform_dim = self.num_harmonics + 1 # fundamental + harmonics
def _compute_voiced_unvoiced(self, f0: torch.Tensor):
"""
Generates a binary mask indicating voiced/unvoiced frames based on the fundamental frequency.
Args:
f0 (torch.Tensor): Fundamental frequency tensor of shape (batch_size, length).
"""
uv_mask = (f0 > self.voiced_threshold).float()
return uv_mask
def _generate_sine_wave(self, f0: torch.Tensor, upsampling_factor: int):
"""
Generates sine waves for the fundamental frequency and its harmonics.
Args:
f0 (torch.Tensor): Fundamental frequency tensor of shape (batch_size, length, 1).
upsampling_factor (int): The factor by which to upsample the sine wave.
"""
batch_size, length, _ = f0.shape
# Create an upsampling grid
upsampling_grid = torch.arange(
1, upsampling_factor + 1, dtype=f0.dtype, device=f0.device
)
# Calculate phase increments
phase_increments = (f0 / self.sampling_rate) * upsampling_grid
phase_remainder = torch.fmod(phase_increments[:, :-1, -1:] + 0.5, 1.0) - 0.5
cumulative_phase = phase_remainder.cumsum(dim=1).fmod(1.0).to(f0.dtype)
phase_increments += torch.nn.functional.pad(
cumulative_phase, (0, 0, 1, 0), mode="constant"
)
# Reshape to match the sine wave shape
phase_increments = phase_increments.reshape(batch_size, -1, 1)
# Scale for harmonics
harmonic_scale = torch.arange(
1, self.waveform_dim + 1, dtype=f0.dtype, device=f0.device
).reshape(1, 1, -1)
phase_increments *= harmonic_scale
# Add random phase offset (except for the fundamental)
random_phase = torch.rand(1, 1, self.waveform_dim, device=f0.device)
random_phase[..., 0] = 0 # Fundamental frequency has no random offset
phase_increments += random_phase
# Generate sine waves
sine_waves = torch.sin(2 * np.pi * phase_increments)
return sine_waves
def forward(self, f0: torch.Tensor, upsampling_factor: int):
with torch.no_grad():
# Expand `f0` to include waveform dimensions
f0 = f0.unsqueeze(-1)
# Generate sine waves
sine_waves = (
self._generate_sine_wave(f0, upsampling_factor) * self.sine_amplitude
)
# Compute voiced/unvoiced mask
voiced_mask = self._compute_voiced_unvoiced(f0)
# Upsample voiced/unvoiced mask
voiced_mask = torch.nn.functional.interpolate(
voiced_mask.transpose(2, 1),
scale_factor=float(upsampling_factor),
mode="nearest",
).transpose(2, 1)
# Compute noise amplitude
noise_amplitude = voiced_mask * self.noise_stddev + (1 - voiced_mask) * (
self.sine_amplitude / 3
)
# Add Gaussian noise
noise = noise_amplitude * torch.randn_like(sine_waves)
# Combine sine waves and noise
sine_waveforms = sine_waves * voiced_mask + noise
return sine_waveforms, voiced_mask, noise
|