File size: 14,233 Bytes
2f5f13b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import math
from typing import Optional

import numpy as np
import torch
from torch.nn.utils import remove_weight_norm
from torch.nn.utils.parametrizations import weight_norm
from torch.utils.checkpoint import checkpoint

LRELU_SLOPE = 0.1


class MRFLayer(torch.nn.Module):
    """

    A single layer of the Multi-Receptive Field (MRF) block.



    This layer consists of two 1D convolutional layers with weight normalization

    and Leaky ReLU activation in between. The first convolution has a dilation,

    while the second has a dilation of 1. A skip connection is added from the input

    to the output.



    Args:

        channels (int): The number of input and output channels.

        kernel_size (int): The kernel size of the convolutional layers.

        dilation (int): The dilation rate for the first convolutional layer.

    """

    def __init__(self, channels, kernel_size, dilation):
        super().__init__()
        self.conv1 = weight_norm(
            torch.nn.Conv1d(
                channels,
                channels,
                kernel_size,
                padding=(kernel_size * dilation - dilation) // 2,
                dilation=dilation,
            )
        )
        self.conv2 = weight_norm(
            torch.nn.Conv1d(
                channels, channels, kernel_size, padding=kernel_size // 2, dilation=1
            )
        )

    def forward(self, x: torch.Tensor):
        # new tensor
        y = torch.nn.functional.leaky_relu(x, LRELU_SLOPE)
        y = self.conv1(y)
        # in-place call
        y = torch.nn.functional.leaky_relu_(y, LRELU_SLOPE)
        y = self.conv2(y)
        return x + y

    def remove_weight_norm(self):
        remove_weight_norm(self.conv1)
        remove_weight_norm(self.conv2)


class MRFBlock(torch.nn.Module):
    """

    A Multi-Receptive Field (MRF) block.



    This block consists of multiple MRFLayers with different dilation rates.

    It applies each layer sequentially to the input.



    Args:

        channels (int): The number of input and output channels for the MRFLayers.

        kernel_size (int): The kernel size for the convolutional layers in the MRFLayers.

        dilations (list[int]): A list of dilation rates for the MRFLayers.

    """

    def __init__(self, channels, kernel_size, dilations):
        super().__init__()
        self.layers = torch.nn.ModuleList()
        for dilation in dilations:
            self.layers.append(MRFLayer(channels, kernel_size, dilation))

    def forward(self, x: torch.Tensor):
        for layer in self.layers:
            x = layer(x)
        return x

    def remove_weight_norm(self):
        for layer in self.layers:
            layer.remove_weight_norm()


class SineGenerator(torch.nn.Module):
    """

    Definition of sine generator



    Generates sine waveforms with optional harmonics and additive noise.

    Can be used to create harmonic noise source for neural vocoders.



    Args:

        samp_rate (int): Sampling rate in Hz.

        harmonic_num (int): Number of harmonic overtones (default 0).

        sine_amp (float): Amplitude of sine-waveform (default 0.1).

        noise_std (float): Standard deviation of Gaussian noise (default 0.003).

        voiced_threshold (float): F0 threshold for voiced/unvoiced classification (default 0).

    """

    def __init__(

        self,

        samp_rate: int,

        harmonic_num: int = 0,

        sine_amp: float = 0.1,

        noise_std: float = 0.003,

        voiced_threshold: float = 0,

    ):
        super(SineGenerator, self).__init__()
        self.sine_amp = sine_amp
        self.noise_std = noise_std
        self.harmonic_num = harmonic_num
        self.dim = self.harmonic_num + 1
        self.sampling_rate = samp_rate
        self.voiced_threshold = voiced_threshold

    def _f02uv(self, f0: torch.Tensor):
        """

        Generates voiced/unvoiced (UV) signal based on the fundamental frequency (F0).



        Args:

            f0 (torch.Tensor): Fundamental frequency tensor of shape (batch_size, length, 1).

        """
        # generate uv signal
        uv = torch.ones_like(f0)
        uv = uv * (f0 > self.voiced_threshold)
        return uv

    def _f02sine(self, f0_values: torch.Tensor):
        """

        Generates sine waveforms based on the fundamental frequency (F0) and its harmonics.



        Args:

            f0_values (torch.Tensor): Tensor of fundamental frequency and its harmonics,

                                      shape (batch_size, length, dim), where dim indicates

                                      the fundamental tone and overtones.

        """
        # convert to F0 in rad. The integer part n can be ignored
        # because 2 * np.pi * n doesn't affect phase
        rad_values = (f0_values / self.sampling_rate) % 1

        # initial phase noise (no noise for fundamental component)
        rand_ini = torch.rand(
            f0_values.shape[0], f0_values.shape[2], device=f0_values.device
        )
        rand_ini[:, 0] = 0
        rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini

        # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
        tmp_over_one = torch.cumsum(rad_values, 1) % 1
        tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
        cumsum_shift = torch.zeros_like(rad_values)
        cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0

        sines = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi)

        return sines

    def forward(self, f0: torch.Tensor):
        with torch.no_grad():
            f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
            # fundamental component
            f0_buf[:, :, 0] = f0[:, :, 0]
            for idx in np.arange(self.harmonic_num):
                f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (idx + 2)

            sine_waves = self._f02sine(f0_buf) * self.sine_amp

            uv = self._f02uv(f0)

            noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
            noise = noise_amp * torch.randn_like(sine_waves)

            sine_waves = sine_waves * uv + noise
        return sine_waves, uv, noise


class SourceModuleHnNSF(torch.nn.Module):
    """

    Generates harmonic and noise source features.



    This module uses the SineGenerator to create harmonic signals based on the

    fundamental frequency (F0) and merges them into a single excitation signal.



    Args:

        sample_rate (int): Sampling rate in Hz.

        harmonic_num (int, optional): Number of harmonics above F0. Defaults to 0.

        sine_amp (float, optional): Amplitude of sine source signal. Defaults to 0.1.

        add_noise_std (float, optional): Standard deviation of additive Gaussian noise. Defaults to 0.003.

        voiced_threshod (float, optional): Threshold to set voiced/unvoiced given F0. Defaults to 0.

    """

    def __init__(

        self,

        sampling_rate: int,

        harmonic_num: int = 0,

        sine_amp: float = 0.1,

        add_noise_std: float = 0.003,

        voiced_threshold: float = 0,

    ):
        super(SourceModuleHnNSF, self).__init__()

        self.sine_amp = sine_amp
        self.noise_std = add_noise_std

        # to produce sine waveforms
        self.l_sin_gen = SineGenerator(
            sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshold
        )

        # to merge source harmonics into a single excitation
        self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
        self.l_tanh = torch.nn.Tanh()

    def forward(self, x: torch.Tensor):
        sine_wavs, uv, _ = self.l_sin_gen(x)
        sine_wavs = sine_wavs.to(dtype=self.l_linear.weight.dtype)
        sine_merge = self.l_tanh(self.l_linear(sine_wavs))

        return sine_merge, None, None


class HiFiGANMRFGenerator(torch.nn.Module):
    """

    HiFi-GAN generator with Multi-Receptive Field (MRF) blocks.



    This generator takes an input feature sequence and fundamental frequency (F0)

    as input and generates an audio waveform. It utilizes transposed convolutions

    for upsampling and MRF blocks for feature refinement. It can also condition

    on global conditioning features.



    Args:

        in_channel (int): Number of input channels.

        upsample_initial_channel (int): Number of channels after the initial convolution.

        upsample_rates (list[int]): List of upsampling rates for the transposed convolutions.

        upsample_kernel_sizes (list[int]): List of kernel sizes for the transposed convolutions.

        resblock_kernel_sizes (list[int]): List of kernel sizes for the convolutional layers in the MRF blocks.

        resblock_dilations (list[list[int]]): List of lists of dilation rates for the MRF blocks.

        gin_channels (int): Number of global conditioning input channels (0 if no global conditioning).

        sample_rate (int): Sampling rate of the audio.

        harmonic_num (int): Number of harmonics to generate.

        checkpointing (bool): Whether to use checkpointing to save memory during training (default: False).

    """

    def __init__(

        self,

        in_channel: int,

        upsample_initial_channel: int,

        upsample_rates: list[int],

        upsample_kernel_sizes: list[int],

        resblock_kernel_sizes: list[int],

        resblock_dilations: list[list[int]],

        gin_channels: int,

        sample_rate: int,

        harmonic_num: int,

        checkpointing: bool = False,

    ):
        super().__init__()
        self.num_kernels = len(resblock_kernel_sizes)
        self.checkpointing = checkpointing

        self.f0_upsample = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
        self.m_source = SourceModuleHnNSF(sample_rate, harmonic_num)

        self.conv_pre = weight_norm(
            torch.nn.Conv1d(
                in_channel, upsample_initial_channel, kernel_size=7, stride=1, padding=3
            )
        )
        self.upsamples = torch.nn.ModuleList()
        self.noise_convs = torch.nn.ModuleList()

        stride_f0s = [
            math.prod(upsample_rates[i + 1 :]) if i + 1 < len(upsample_rates) else 1
            for i in range(len(upsample_rates))
        ]

        for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
            # handling odd upsampling rates
            if u % 2 == 0:
                # old method
                padding = (k - u) // 2
            else:
                padding = u // 2 + u % 2

            self.upsamples.append(
                weight_norm(
                    torch.nn.ConvTranspose1d(
                        upsample_initial_channel // (2**i),
                        upsample_initial_channel // (2 ** (i + 1)),
                        kernel_size=k,
                        stride=u,
                        padding=padding,
                        output_padding=u % 2,
                    )
                )
            )
            """ handling odd upsampling rates

            #  s   k   p

            # 40  80  20

            # 32  64  16

            #  4   8   2

            #  2   3   1

            # 63 125  31

            #  9  17   4

            #  3   5   1

            #  1   1   0

            """
            stride = stride_f0s[i]
            kernel = 1 if stride == 1 else stride * 2 - stride % 2
            padding = 0 if stride == 1 else (kernel - stride) // 2

            self.noise_convs.append(
                torch.nn.Conv1d(
                    1,
                    upsample_initial_channel // (2 ** (i + 1)),
                    kernel_size=kernel,
                    stride=stride,
                    padding=padding,
                )
            )
        self.mrfs = torch.nn.ModuleList()
        for i in range(len(self.upsamples)):
            channel = upsample_initial_channel // (2 ** (i + 1))
            self.mrfs.append(
                torch.nn.ModuleList(
                    [
                        MRFBlock(channel, kernel_size=k, dilations=d)
                        for k, d in zip(resblock_kernel_sizes, resblock_dilations)
                    ]
                )
            )
        self.conv_post = weight_norm(
            torch.nn.Conv1d(channel, 1, kernel_size=7, stride=1, padding=3)
        )
        if gin_channels != 0:
            self.cond = torch.nn.Conv1d(gin_channels, upsample_initial_channel, 1)

    def forward(

        self, x: torch.Tensor, f0: torch.Tensor, g: Optional[torch.Tensor] = None

    ):
        f0 = self.f0_upsample(f0[:, None, :]).transpose(-1, -2)
        har_source, _, _ = self.m_source(f0)
        har_source = har_source.transpose(-1, -2)
        # new tensor
        x = self.conv_pre(x)

        if g is not None:
            # in-place call
            x += self.cond(g)

        for ups, mrf, noise_conv in zip(self.upsamples, self.mrfs, self.noise_convs):
            # in-place call
            x = torch.nn.functional.leaky_relu_(x, LRELU_SLOPE)

            if self.training and self.checkpointing:
                x = checkpoint(ups, x, use_reentrant=False)
            else:
                x = ups(x)

            x += noise_conv(har_source)

            def mrf_sum(x, layers):
                return sum(layer(x) for layer in layers) / self.num_kernels

            if self.training and self.checkpointing:
                x = checkpoint(mrf_sum, x, mrf, use_reentrant=False)
            else:
                x = mrf_sum(x, mrf)
        # in-place call
        x = torch.nn.functional.leaky_relu_(x)
        x = self.conv_post(x)
        # in-place call
        x = torch.tanh_(x)
        return x

    def remove_weight_norm(self):
        remove_weight_norm(self.conv_pre)
        for up in self.upsamples:
            remove_weight_norm(up)
        for mrf in self.mrfs:
            mrf.remove_weight_norm()
        remove_weight_norm(self.conv_post)