Spaces:
Running
Running
File size: 17,664 Bytes
2f5f13b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
import numpy as np
import torch
from torch.nn.utils.parametrizations import weight_norm
from torch.nn.utils.parametrize import remove_parametrizations
from torch.utils.checkpoint import checkpoint
from rvc.lib.algorithm.commons import get_padding
class ResBlock(torch.nn.Module):
"""
Residual block with multiple dilated convolutions.
This block applies a sequence of dilated convolutional layers with Leaky ReLU activation.
It's designed to capture information at different scales due to the varying dilation rates.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
kernel_size (int, optional): Kernel size for the convolutional layers. Defaults to 7.
dilation (tuple[int], optional): Tuple of dilation rates for the convolutional layers. Defaults to (1, 3, 5).
leaky_relu_slope (float, optional): Slope for the Leaky ReLU activation. Defaults to 0.2.
"""
def __init__(
self,
*,
in_channels: int,
out_channels: int,
kernel_size: int = 7,
dilation: tuple[int] = (1, 3, 5),
leaky_relu_slope: float = 0.2,
):
super(ResBlock, self).__init__()
self.leaky_relu_slope = leaky_relu_slope
self.in_channels = in_channels
self.out_channels = out_channels
self.convs1 = torch.nn.ModuleList(
[
weight_norm(
torch.nn.Conv1d(
in_channels=in_channels if idx == 0 else out_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=1,
dilation=d,
padding=get_padding(kernel_size, d),
)
)
for idx, d in enumerate(dilation)
]
)
self.convs1.apply(self.init_weights)
self.convs2 = torch.nn.ModuleList(
[
weight_norm(
torch.nn.Conv1d(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=1,
dilation=d,
padding=get_padding(kernel_size, d),
)
)
for idx, d in enumerate(dilation)
]
)
self.convs2.apply(self.init_weights)
def forward(self, x: torch.Tensor):
for idx, (c1, c2) in enumerate(zip(self.convs1, self.convs2)):
# new tensor
xt = torch.nn.functional.leaky_relu(x, self.leaky_relu_slope)
xt = c1(xt)
# in-place call
xt = torch.nn.functional.leaky_relu_(xt, self.leaky_relu_slope)
xt = c2(xt)
if idx != 0 or self.in_channels == self.out_channels:
x = xt + x
else:
x = xt
return x
def remove_parametrizations(self):
for c1, c2 in zip(self.convs1, self.convs2):
remove_parametrizations(c1)
remove_parametrizations(c2)
def init_weights(self, m):
if type(m) == torch.nn.Conv1d:
m.weight.data.normal_(0, 0.01)
m.bias.data.fill_(0.0)
class AdaIN(torch.nn.Module):
"""
Adaptive Instance Normalization layer.
This layer applies a scaling factor to the input based on a learnable weight.
Args:
channels (int): Number of input channels.
leaky_relu_slope (float, optional): Slope for the Leaky ReLU activation applied after scaling. Defaults to 0.2.
"""
def __init__(
self,
*,
channels: int,
leaky_relu_slope: float = 0.2,
):
super().__init__()
self.weight = torch.nn.Parameter(torch.ones(channels))
# safe to use in-place as it is used on a new x+gaussian tensor
self.activation = torch.nn.LeakyReLU(leaky_relu_slope, inplace=True)
def forward(self, x: torch.Tensor):
gaussian = torch.randn_like(x) * self.weight[None, :, None]
return self.activation(x + gaussian)
class ParallelResBlock(torch.nn.Module):
"""
Parallel residual block that applies multiple residual blocks with different kernel sizes in parallel.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
kernel_sizes (tuple[int], optional): Tuple of kernel sizes for the parallel residual blocks. Defaults to (3, 7, 11).
dilation (tuple[int], optional): Tuple of dilation rates for the convolutional layers within the residual blocks. Defaults to (1, 3, 5).
leaky_relu_slope (float, optional): Slope for the Leaky ReLU activation. Defaults to 0.2.
"""
def __init__(
self,
*,
in_channels: int,
out_channels: int,
kernel_sizes: tuple[int] = (3, 7, 11),
dilation: tuple[int] = (1, 3, 5),
leaky_relu_slope: float = 0.2,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.input_conv = torch.nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=7,
stride=1,
padding=3,
)
self.blocks = torch.nn.ModuleList(
[
torch.nn.Sequential(
AdaIN(channels=out_channels),
ResBlock(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=kernel_size,
dilation=dilation,
leaky_relu_slope=leaky_relu_slope,
),
AdaIN(channels=out_channels),
)
for kernel_size in kernel_sizes
]
)
def forward(self, x: torch.Tensor):
x = self.input_conv(x)
results = [block(x) for block in self.blocks]
return torch.mean(torch.stack(results), dim=0)
def remove_parametrizations(self):
for block in self.blocks:
block[1].remove_parametrizations()
class SineGenerator(torch.nn.Module):
"""
Definition of sine generator
Generates sine waveforms with optional harmonics and additive noise.
Can be used to create harmonic noise source for neural vocoders.
Args:
samp_rate (int): Sampling rate in Hz.
harmonic_num (int): Number of harmonic overtones (default 0).
sine_amp (float): Amplitude of sine-waveform (default 0.1).
noise_std (float): Standard deviation of Gaussian noise (default 0.003).
voiced_threshold (float): F0 threshold for voiced/unvoiced classification (default 0).
"""
def __init__(
self,
samp_rate,
harmonic_num=0,
sine_amp=0.1,
noise_std=0.003,
voiced_threshold=0,
):
super(SineGenerator, self).__init__()
self.sine_amp = sine_amp
self.noise_std = noise_std
self.harmonic_num = harmonic_num
self.dim = self.harmonic_num + 1
self.sampling_rate = samp_rate
self.voiced_threshold = voiced_threshold
def _f02uv(self, f0):
# generate uv signal
uv = torch.ones_like(f0)
uv = uv * (f0 > self.voiced_threshold)
return uv
def _f02sine(self, f0_values):
"""f0_values: (batchsize, length, dim)
where dim indicates fundamental tone and overtones
"""
# convert to F0 in rad. The interger part n can be ignored
# because 2 * np.pi * n doesn't affect phase
rad_values = (f0_values / self.sampling_rate) % 1
# initial phase noise (no noise for fundamental component)
rand_ini = torch.rand(
f0_values.shape[0], f0_values.shape[2], device=f0_values.device
)
rand_ini[:, 0] = 0
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
tmp_over_one = torch.cumsum(rad_values, 1) % 1
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
cumsum_shift = torch.zeros_like(rad_values)
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
sines = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi)
return sines
def forward(self, f0):
with torch.no_grad():
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
# fundamental component
f0_buf[:, :, 0] = f0[:, :, 0]
for idx in np.arange(self.harmonic_num):
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (idx + 2)
sine_waves = self._f02sine(f0_buf) * self.sine_amp
uv = self._f02uv(f0)
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
noise = noise_amp * torch.randn_like(sine_waves)
sine_waves = sine_waves * uv + noise * (1 - uv)
return sine_waves, uv, noise
class SourceModuleHnNSF(torch.nn.Module):
"""
Source Module for generating harmonic and noise signals.
This module uses a SineGenerator to produce harmonic signals based on the fundamental frequency (F0).
Args:
sampling_rate (int): Sampling rate of the audio.
harmonic_num (int, optional): Number of harmonics to generate. Defaults to 0.
sine_amp (float, optional): Amplitude of the sine wave. Defaults to 0.1.
add_noise_std (float, optional): Standard deviation of the additive noise. Defaults to 0.003.
voiced_threshold (int, optional): F0 threshold for voiced/unvoiced classification. Defaults to 0.
"""
def __init__(
self,
sampling_rate,
harmonic_num=0,
sine_amp=0.1,
add_noise_std=0.003,
voiced_threshold=0,
):
super(SourceModuleHnNSF, self).__init__()
self.sine_amp = sine_amp
self.noise_std = add_noise_std
# to produce sine waveforms
self.l_sin_gen = SineGenerator(
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshold
)
# to merge source harmonics into a single excitation
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
self.l_tanh = torch.nn.Tanh()
def forward(self, x: torch.Tensor):
sine_wavs, uv, _ = self.l_sin_gen(x)
sine_wavs = sine_wavs.to(dtype=self.l_linear.weight.dtype)
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
return sine_merge, None, None
class RefineGANGenerator(torch.nn.Module):
"""
RefineGAN generator for audio synthesis.
This generator uses a combination of downsampling, residual blocks, and parallel residual blocks
to refine an input mel-spectrogram and fundamental frequency (F0) into an audio waveform.
It can also incorporate global conditioning.
Args:
sample_rate (int, optional): Sampling rate of the audio. Defaults to 44100.
downsample_rates (tuple[int], optional): Downsampling rates for the downsampling blocks. Defaults to (2, 2, 8, 8).
upsample_rates (tuple[int], optional): Upsampling rates for the upsampling blocks. Defaults to (8, 8, 2, 2).
leaky_relu_slope (float, optional): Slope for the Leaky ReLU activation. Defaults to 0.2.
num_mels (int, optional): Number of mel-frequency bins in the input mel-spectrogram. Defaults to 128.
start_channels (int, optional): Number of channels in the initial convolutional layer. Defaults to 16.
gin_channels (int, optional): Number of channels for the global conditioning input. Defaults to 256.
checkpointing (bool, optional): Whether to use checkpointing for memory efficiency. Defaults to False.
"""
def __init__(
self,
*,
sample_rate: int = 44100,
downsample_rates: tuple[int] = (2, 2, 8, 8),
upsample_rates: tuple[int] = (8, 8, 2, 2),
leaky_relu_slope: float = 0.2,
num_mels: int = 128,
start_channels: int = 16,
gin_channels: int = 256,
checkpointing=False,
):
super().__init__()
self.downsample_rates = downsample_rates
self.upsample_rates = upsample_rates
self.leaky_relu_slope = leaky_relu_slope
self.checkpointing = checkpointing
self.f0_upsample = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
self.m_source = SourceModuleHnNSF(sample_rate, harmonic_num=8)
# expands
self.source_conv = weight_norm(
torch.nn.Conv1d(
in_channels=1,
out_channels=start_channels,
kernel_size=7,
stride=1,
padding=3,
)
)
channels = start_channels
self.downsample_blocks = torch.nn.ModuleList([])
for rate in downsample_rates:
new_channels = channels * 2
self.downsample_blocks.append(
torch.nn.Sequential(
torch.nn.Upsample(scale_factor=1 / rate, mode="linear"),
ResBlock(
in_channels=channels,
out_channels=new_channels,
kernel_size=7,
dilation=(1, 3, 5),
leaky_relu_slope=leaky_relu_slope,
),
)
)
channels = new_channels
self.mel_conv = weight_norm(
torch.nn.Conv1d(
in_channels=num_mels,
out_channels=channels,
kernel_size=7,
stride=1,
padding=3,
)
)
if gin_channels != 0:
self.cond = torch.nn.Conv1d(256, channels, 1)
channels *= 2
self.upsample_blocks = torch.nn.ModuleList([])
self.upsample_conv_blocks = torch.nn.ModuleList([])
for rate in upsample_rates:
new_channels = channels // 2
self.upsample_blocks.append(
torch.nn.Upsample(scale_factor=rate, mode="linear")
)
self.upsample_conv_blocks.append(
ParallelResBlock(
in_channels=channels + channels // 4,
out_channels=new_channels,
kernel_sizes=(3, 7, 11),
dilation=(1, 3, 5),
leaky_relu_slope=leaky_relu_slope,
)
)
channels = new_channels
self.conv_post = weight_norm(
torch.nn.Conv1d(
in_channels=channels,
out_channels=1,
kernel_size=7,
stride=1,
padding=3,
)
)
def forward(self, mel: torch.Tensor, f0: torch.Tensor, g: torch.Tensor = None):
f0 = self.f0_upsample(f0[:, None, :]).transpose(-1, -2)
har_source, _, _ = self.m_source(f0)
har_source = har_source.transpose(-1, -2)
# expanding pitch source to 16 channels
# new tensor
x = self.source_conv(har_source)
# making a downscaled version to match upscaler stages
downs = []
for i, block in enumerate(self.downsample_blocks):
# in-place call
x = torch.nn.functional.leaky_relu_(x, self.leaky_relu_slope)
downs.append(x)
if self.training and self.checkpointing:
x = checkpoint(block, x, use_reentrant=False)
else:
x = block(x)
# expanding spectrogram from 192 to 256 channels
mel = self.mel_conv(mel)
if g is not None:
# adding expanded speaker embedding
mel += self.cond(g)
x = torch.cat([mel, x], dim=1)
for ups, res, down in zip(
self.upsample_blocks,
self.upsample_conv_blocks,
reversed(downs),
):
# in-place call
x = torch.nn.functional.leaky_relu_(x, self.leaky_relu_slope)
if self.training and self.checkpointing:
x = checkpoint(ups, x, use_reentrant=False)
x = torch.cat([x, down], dim=1)
x = checkpoint(res, x, use_reentrant=False)
else:
x = ups(x)
x = torch.cat([x, down], dim=1)
x = res(x)
# in-place call
x = torch.nn.functional.leaky_relu_(x, self.leaky_relu_slope)
x = self.conv_post(x)
# in-place call
x = torch.tanh_(x)
return x
def remove_parametrizations(self):
remove_parametrizations(self.source_conv)
remove_parametrizations(self.mel_conv)
remove_parametrizations(self.conv_post)
for block in self.downsample_blocks:
block[1].remove_parametrizations()
for block in self.upsample_conv_blocks:
block.remove_parametrizations()
|