Spaces:
Running
Running
File size: 9,111 Bytes
2f5f13b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import torch
from itertools import chain
from typing import Optional, Tuple
from torch.nn.utils import remove_weight_norm
from torch.nn.utils.parametrizations import weight_norm
from rvc.lib.algorithm.modules import WaveNet
from rvc.lib.algorithm.commons import get_padding, init_weights
LRELU_SLOPE = 0.1
def create_conv1d_layer(channels, kernel_size, dilation):
return weight_norm(
torch.nn.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation,
padding=get_padding(kernel_size, dilation),
)
)
def apply_mask(tensor: torch.Tensor, mask: Optional[torch.Tensor]):
return tensor * mask if mask else tensor
def apply_mask_(tensor: torch.Tensor, mask: Optional[torch.Tensor]):
return tensor.mul_(mask) if mask else tensor
class ResBlock(torch.nn.Module):
"""
A residual block module that applies a series of 1D convolutional layers with residual connections.
"""
def __init__(
self, channels: int, kernel_size: int = 3, dilations: Tuple[int] = (1, 3, 5)
):
"""
Initializes the ResBlock.
Args:
channels (int): Number of input and output channels for the convolution layers.
kernel_size (int): Size of the convolution kernel. Defaults to 3.
dilations (Tuple[int]): Tuple of dilation rates for the convolution layers in the first set.
"""
super().__init__()
# Create convolutional layers with specified dilations and initialize weights
self.convs1 = self._create_convs(channels, kernel_size, dilations)
self.convs2 = self._create_convs(channels, kernel_size, [1] * len(dilations))
@staticmethod
def _create_convs(channels: int, kernel_size: int, dilations: Tuple[int]):
"""
Creates a list of 1D convolutional layers with specified dilations.
Args:
channels (int): Number of input and output channels for the convolution layers.
kernel_size (int): Size of the convolution kernel.
dilations (Tuple[int]): Tuple of dilation rates for each convolution layer.
"""
layers = torch.nn.ModuleList(
[create_conv1d_layer(channels, kernel_size, d) for d in dilations]
)
layers.apply(init_weights)
return layers
def forward(self, x: torch.Tensor, x_mask: torch.Tensor = None):
for conv1, conv2 in zip(self.convs1, self.convs2):
x_residual = x
# new tensor
x = torch.nn.functional.leaky_relu(x, LRELU_SLOPE)
# in-place call
x = apply_mask_(x, x_mask)
# in-place call
x = torch.nn.functional.leaky_relu_(conv1(x), LRELU_SLOPE)
# in-place call
x = apply_mask_(x, x_mask)
x = conv2(x)
# in-place call
x += x_residual
# in-place call
return apply_mask_(x, x_mask)
def remove_weight_norm(self):
for conv in chain(self.convs1, self.convs2):
remove_weight_norm(conv)
class Flip(torch.nn.Module):
"""
Flip module for flow-based models.
This module flips the input along the time dimension.
"""
def forward(self, x, *args, reverse=False, **kwargs):
x = torch.flip(x, [1])
if not reverse:
logdet = torch.zeros(x.size(0), dtype=x.dtype, device=x.device)
return x, logdet
else:
return x
class ResidualCouplingBlock(torch.nn.Module):
"""
Residual Coupling Block for normalizing flow.
Args:
channels (int): Number of channels in the input.
hidden_channels (int): Number of hidden channels in the coupling layer.
kernel_size (int): Kernel size of the convolutional layers.
dilation_rate (int): Dilation rate of the convolutional layers.
n_layers (int): Number of layers in the coupling layer.
n_flows (int, optional): Number of coupling layers in the block. Defaults to 4.
gin_channels (int, optional): Number of channels for the global conditioning input. Defaults to 0.
"""
def __init__(
self,
channels: int,
hidden_channels: int,
kernel_size: int,
dilation_rate: int,
n_layers: int,
n_flows: int = 4,
gin_channels: int = 0,
):
super(ResidualCouplingBlock, self).__init__()
self.channels = channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.n_flows = n_flows
self.gin_channels = gin_channels
self.flows = torch.nn.ModuleList()
for _ in range(n_flows):
self.flows.append(
ResidualCouplingLayer(
channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=gin_channels,
mean_only=True,
)
)
self.flows.append(Flip())
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
g: Optional[torch.Tensor] = None,
reverse: bool = False,
):
if not reverse:
for flow in self.flows:
x, _ = flow(x, x_mask, g=g, reverse=reverse)
else:
for flow in reversed(self.flows):
x = flow.forward(x, x_mask, g=g, reverse=reverse)
return x
def remove_weight_norm(self):
for i in range(self.n_flows):
self.flows[i * 2].remove_weight_norm()
def __prepare_scriptable__(self):
for i in range(self.n_flows):
for hook in self.flows[i * 2]._forward_pre_hooks.values():
if (
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm"
and hook.__class__.__name__ == "WeightNorm"
):
torch.nn.utils.remove_weight_norm(self.flows[i * 2])
return self
class ResidualCouplingLayer(torch.nn.Module):
"""
Residual coupling layer for flow-based models.
Args:
channels (int): Number of channels.
hidden_channels (int): Number of hidden channels.
kernel_size (int): Size of the convolutional kernel.
dilation_rate (int): Dilation rate of the convolution.
n_layers (int): Number of convolutional layers.
p_dropout (float, optional): Dropout probability. Defaults to 0.
gin_channels (int, optional): Number of conditioning channels. Defaults to 0.
mean_only (bool, optional): Whether to use mean-only coupling. Defaults to False.
"""
def __init__(
self,
channels: int,
hidden_channels: int,
kernel_size: int,
dilation_rate: int,
n_layers: int,
p_dropout: float = 0,
gin_channels: int = 0,
mean_only: bool = False,
):
assert channels % 2 == 0, "channels should be divisible by 2"
super().__init__()
self.channels = channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.half_channels = channels // 2
self.mean_only = mean_only
self.pre = torch.nn.Conv1d(self.half_channels, hidden_channels, 1)
self.enc = WaveNet(
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
p_dropout=p_dropout,
gin_channels=gin_channels,
)
self.post = torch.nn.Conv1d(
hidden_channels, self.half_channels * (2 - mean_only), 1
)
self.post.weight.data.zero_()
self.post.bias.data.zero_()
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
g: Optional[torch.Tensor] = None,
reverse: bool = False,
):
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
h = self.pre(x0) * x_mask
h = self.enc(h, x_mask, g=g)
stats = self.post(h) * x_mask
if not self.mean_only:
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
else:
m = stats
logs = torch.zeros_like(m)
if not reverse:
x1 = m + x1 * torch.exp(logs) * x_mask
x = torch.cat([x0, x1], 1)
logdet = torch.sum(logs, [1, 2])
return x, logdet
else:
x1 = (x1 - m) * torch.exp(-logs) * x_mask
x = torch.cat([x0, x1], 1)
return x
def remove_weight_norm(self):
self.enc.remove_weight_norm()
|