File size: 9,111 Bytes
2f5f13b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import torch
from itertools import chain
from typing import Optional, Tuple
from torch.nn.utils import remove_weight_norm
from torch.nn.utils.parametrizations import weight_norm

from rvc.lib.algorithm.modules import WaveNet
from rvc.lib.algorithm.commons import get_padding, init_weights

LRELU_SLOPE = 0.1


def create_conv1d_layer(channels, kernel_size, dilation):
    return weight_norm(
        torch.nn.Conv1d(
            channels,
            channels,
            kernel_size,
            1,
            dilation=dilation,
            padding=get_padding(kernel_size, dilation),
        )
    )


def apply_mask(tensor: torch.Tensor, mask: Optional[torch.Tensor]):
    return tensor * mask if mask else tensor


def apply_mask_(tensor: torch.Tensor, mask: Optional[torch.Tensor]):
    return tensor.mul_(mask) if mask else tensor


class ResBlock(torch.nn.Module):
    """

    A residual block module that applies a series of 1D convolutional layers with residual connections.

    """

    def __init__(

        self, channels: int, kernel_size: int = 3, dilations: Tuple[int] = (1, 3, 5)

    ):
        """

        Initializes the ResBlock.



        Args:

            channels (int): Number of input and output channels for the convolution layers.

            kernel_size (int): Size of the convolution kernel. Defaults to 3.

            dilations (Tuple[int]): Tuple of dilation rates for the convolution layers in the first set.

        """
        super().__init__()
        # Create convolutional layers with specified dilations and initialize weights
        self.convs1 = self._create_convs(channels, kernel_size, dilations)
        self.convs2 = self._create_convs(channels, kernel_size, [1] * len(dilations))

    @staticmethod
    def _create_convs(channels: int, kernel_size: int, dilations: Tuple[int]):
        """

        Creates a list of 1D convolutional layers with specified dilations.



        Args:

            channels (int): Number of input and output channels for the convolution layers.

            kernel_size (int): Size of the convolution kernel.

            dilations (Tuple[int]): Tuple of dilation rates for each convolution layer.

        """
        layers = torch.nn.ModuleList(
            [create_conv1d_layer(channels, kernel_size, d) for d in dilations]
        )
        layers.apply(init_weights)
        return layers

    def forward(self, x: torch.Tensor, x_mask: torch.Tensor = None):
        for conv1, conv2 in zip(self.convs1, self.convs2):
            x_residual = x
            # new tensor
            x = torch.nn.functional.leaky_relu(x, LRELU_SLOPE)
            # in-place call
            x = apply_mask_(x, x_mask)
            # in-place call
            x = torch.nn.functional.leaky_relu_(conv1(x), LRELU_SLOPE)
            # in-place call
            x = apply_mask_(x, x_mask)
            x = conv2(x)
            # in-place call
            x += x_residual
        # in-place call
        return apply_mask_(x, x_mask)

    def remove_weight_norm(self):
        for conv in chain(self.convs1, self.convs2):
            remove_weight_norm(conv)


class Flip(torch.nn.Module):
    """

    Flip module for flow-based models.



    This module flips the input along the time dimension.

    """

    def forward(self, x, *args, reverse=False, **kwargs):
        x = torch.flip(x, [1])
        if not reverse:
            logdet = torch.zeros(x.size(0), dtype=x.dtype, device=x.device)
            return x, logdet
        else:
            return x


class ResidualCouplingBlock(torch.nn.Module):
    """

    Residual Coupling Block for normalizing flow.



    Args:

        channels (int): Number of channels in the input.

        hidden_channels (int): Number of hidden channels in the coupling layer.

        kernel_size (int): Kernel size of the convolutional layers.

        dilation_rate (int): Dilation rate of the convolutional layers.

        n_layers (int): Number of layers in the coupling layer.

        n_flows (int, optional): Number of coupling layers in the block. Defaults to 4.

        gin_channels (int, optional): Number of channels for the global conditioning input. Defaults to 0.

    """

    def __init__(

        self,

        channels: int,

        hidden_channels: int,

        kernel_size: int,

        dilation_rate: int,

        n_layers: int,

        n_flows: int = 4,

        gin_channels: int = 0,

    ):
        super(ResidualCouplingBlock, self).__init__()
        self.channels = channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.n_flows = n_flows
        self.gin_channels = gin_channels

        self.flows = torch.nn.ModuleList()
        for _ in range(n_flows):
            self.flows.append(
                ResidualCouplingLayer(
                    channels,
                    hidden_channels,
                    kernel_size,
                    dilation_rate,
                    n_layers,
                    gin_channels=gin_channels,
                    mean_only=True,
                )
            )
            self.flows.append(Flip())

    def forward(

        self,

        x: torch.Tensor,

        x_mask: torch.Tensor,

        g: Optional[torch.Tensor] = None,

        reverse: bool = False,

    ):
        if not reverse:
            for flow in self.flows:
                x, _ = flow(x, x_mask, g=g, reverse=reverse)
        else:
            for flow in reversed(self.flows):
                x = flow.forward(x, x_mask, g=g, reverse=reverse)
        return x

    def remove_weight_norm(self):
        for i in range(self.n_flows):
            self.flows[i * 2].remove_weight_norm()

    def __prepare_scriptable__(self):
        for i in range(self.n_flows):
            for hook in self.flows[i * 2]._forward_pre_hooks.values():
                if (
                    hook.__module__ == "torch.nn.utils.parametrizations.weight_norm"
                    and hook.__class__.__name__ == "WeightNorm"
                ):
                    torch.nn.utils.remove_weight_norm(self.flows[i * 2])

        return self


class ResidualCouplingLayer(torch.nn.Module):
    """

    Residual coupling layer for flow-based models.



    Args:

        channels (int): Number of channels.

        hidden_channels (int): Number of hidden channels.

        kernel_size (int): Size of the convolutional kernel.

        dilation_rate (int): Dilation rate of the convolution.

        n_layers (int): Number of convolutional layers.

        p_dropout (float, optional): Dropout probability. Defaults to 0.

        gin_channels (int, optional): Number of conditioning channels. Defaults to 0.

        mean_only (bool, optional): Whether to use mean-only coupling. Defaults to False.

    """

    def __init__(

        self,

        channels: int,

        hidden_channels: int,

        kernel_size: int,

        dilation_rate: int,

        n_layers: int,

        p_dropout: float = 0,

        gin_channels: int = 0,

        mean_only: bool = False,

    ):
        assert channels % 2 == 0, "channels should be divisible by 2"
        super().__init__()
        self.channels = channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.half_channels = channels // 2
        self.mean_only = mean_only

        self.pre = torch.nn.Conv1d(self.half_channels, hidden_channels, 1)
        self.enc = WaveNet(
            hidden_channels,
            kernel_size,
            dilation_rate,
            n_layers,
            p_dropout=p_dropout,
            gin_channels=gin_channels,
        )
        self.post = torch.nn.Conv1d(
            hidden_channels, self.half_channels * (2 - mean_only), 1
        )
        self.post.weight.data.zero_()
        self.post.bias.data.zero_()

    def forward(

        self,

        x: torch.Tensor,

        x_mask: torch.Tensor,

        g: Optional[torch.Tensor] = None,

        reverse: bool = False,

    ):
        x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
        h = self.pre(x0) * x_mask
        h = self.enc(h, x_mask, g=g)
        stats = self.post(h) * x_mask
        if not self.mean_only:
            m, logs = torch.split(stats, [self.half_channels] * 2, 1)
        else:
            m = stats
            logs = torch.zeros_like(m)

        if not reverse:
            x1 = m + x1 * torch.exp(logs) * x_mask
            x = torch.cat([x0, x1], 1)
            logdet = torch.sum(logs, [1, 2])
            return x, logdet
        else:
            x1 = (x1 - m) * torch.exp(-logs) * x_mask
            x = torch.cat([x0, x1], 1)
            return x

    def remove_weight_norm(self):
        self.enc.remove_weight_norm()