File size: 7,623 Bytes
2f5f13b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import torch
import torch.utils.data
from librosa.filters import mel as librosa_mel_fn


def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
    """

    Dynamic range compression using log10.



    Args:

        x (torch.Tensor): Input tensor.

        C (float, optional): Scaling factor. Defaults to 1.

        clip_val (float, optional): Minimum value for clamping. Defaults to 1e-5.

    """
    return torch.log(torch.clamp(x, min=clip_val) * C)


def dynamic_range_decompression_torch(x, C=1):
    """

    Dynamic range decompression using exp.



    Args:

        x (torch.Tensor): Input tensor.

        C (float, optional): Scaling factor. Defaults to 1.

    """
    return torch.exp(x) / C


def spectral_normalize_torch(magnitudes):
    """

    Spectral normalization using dynamic range compression.



    Args:

        magnitudes (torch.Tensor): Magnitude spectrogram.

    """
    return dynamic_range_compression_torch(magnitudes)


def spectral_de_normalize_torch(magnitudes):
    """

    Spectral de-normalization using dynamic range decompression.



    Args:

        magnitudes (torch.Tensor): Normalized spectrogram.

    """
    return dynamic_range_decompression_torch(magnitudes)


mel_basis = {}
hann_window = {}


def spectrogram_torch(y, n_fft, hop_size, win_size, center=False):
    """

    Compute the spectrogram of a signal using STFT.



    Args:

        y (torch.Tensor): Input signal.

        n_fft (int): FFT window size.

        hop_size (int): Hop size between frames.

        win_size (int): Window size.

        center (bool, optional): Whether to center the window. Defaults to False.

    """
    global hann_window
    dtype_device = str(y.dtype) + "_" + str(y.device)
    wnsize_dtype_device = str(win_size) + "_" + dtype_device
    if wnsize_dtype_device not in hann_window:
        hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
            dtype=y.dtype, device=y.device
        )

    y = torch.nn.functional.pad(
        y.unsqueeze(1),
        (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
        mode="reflect",
    )
    y = y.squeeze(1)

    spec = torch.stft(
        y,
        n_fft=n_fft,
        hop_length=hop_size,
        win_length=win_size,
        window=hann_window[wnsize_dtype_device],
        center=center,
        pad_mode="reflect",
        normalized=False,
        onesided=True,
        return_complex=True,
    )

    spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + 1e-6)

    return spec


def spec_to_mel_torch(spec, n_fft, num_mels, sample_rate, fmin, fmax):
    """

    Convert a spectrogram to a mel-spectrogram.



    Args:

        spec (torch.Tensor): Magnitude spectrogram.

        n_fft (int): FFT window size.

        num_mels (int): Number of mel frequency bins.

        sample_rate (int): Sampling rate of the audio signal.

        fmin (float): Minimum frequency.

        fmax (float): Maximum frequency.

    """
    global mel_basis
    dtype_device = str(spec.dtype) + "_" + str(spec.device)
    fmax_dtype_device = str(fmax) + "_" + dtype_device
    if fmax_dtype_device not in mel_basis:
        mel = librosa_mel_fn(
            sr=sample_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
        )
        mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
            dtype=spec.dtype, device=spec.device
        )

    melspec = torch.matmul(mel_basis[fmax_dtype_device], spec)
    melspec = spectral_normalize_torch(melspec)
    return melspec


def mel_spectrogram_torch(

    y, n_fft, num_mels, sample_rate, hop_size, win_size, fmin, fmax, center=False

):
    """

    Compute the mel-spectrogram of a signal.



    Args:

        y (torch.Tensor): Input signal.

        n_fft (int): FFT window size.

        num_mels (int): Number of mel frequency bins.

        sample_rate (int): Sampling rate of the audio signal.

        hop_size (int): Hop size between frames.

        win_size (int): Window size.

        fmin (float): Minimum frequency.

        fmax (float): Maximum frequency.

        center (bool, optional): Whether to center the window. Defaults to False.

    """
    spec = spectrogram_torch(y, n_fft, hop_size, win_size, center)

    melspec = spec_to_mel_torch(spec, n_fft, num_mels, sample_rate, fmin, fmax)

    return melspec


def compute_window_length(n_mels: int, sample_rate: int):
    f_min = 0
    f_max = sample_rate / 2
    window_length_seconds = 8 * n_mels / (f_max - f_min)
    window_length = int(window_length_seconds * sample_rate)
    return 2 ** (window_length.bit_length() - 1)


class MultiScaleMelSpectrogramLoss(torch.nn.Module):

    def __init__(

        self,

        sample_rate: int = 24000,

        n_mels: list[int] = [5, 10, 20, 40, 80, 160, 320, 480],

        loss_fn=torch.nn.L1Loss(),

    ):
        super().__init__()
        self.sample_rate = sample_rate
        self.loss_fn = loss_fn
        self.log_base = torch.log(torch.tensor(10.0))
        self.stft_params: list[tuple] = []
        self.hann_window: dict[int, torch.Tensor] = {}
        self.mel_banks: dict[int, torch.Tensor] = {}

        self.stft_params = [
            (mel, compute_window_length(mel, sample_rate), self.sample_rate // 100)
            for mel in n_mels
        ]

    def mel_spectrogram(

        self,

        wav: torch.Tensor,

        n_mels: int,

        window_length: int,

        hop_length: int,

    ):
        # IDs for caching
        dtype_device = str(wav.dtype) + "_" + str(wav.device)
        win_dtype_device = str(window_length) + "_" + dtype_device
        mel_dtype_device = str(n_mels) + "_" + dtype_device
        # caching hann window
        if win_dtype_device not in self.hann_window:
            self.hann_window[win_dtype_device] = torch.hann_window(
                window_length, device=wav.device, dtype=torch.float32
            )

        wav = wav.squeeze(1)  # -> torch(B, T)

        stft = torch.stft(
            wav.float(),
            n_fft=window_length,
            hop_length=hop_length,
            window=self.hann_window[win_dtype_device],
            return_complex=True,
        )  # -> torch (B, window_length // 2 + 1, (T - window_length)/hop_length + 1)

        magnitude = torch.sqrt(stft.real.pow(2) + stft.imag.pow(2) + 1e-6)

        # caching mel filter
        if mel_dtype_device not in self.mel_banks:
            self.mel_banks[mel_dtype_device] = torch.from_numpy(
                librosa_mel_fn(
                    sr=self.sample_rate,
                    n_mels=n_mels,
                    n_fft=window_length,
                    fmin=0,
                    fmax=None,
                )
            ).to(device=wav.device, dtype=torch.float32)

        mel_spectrogram = torch.matmul(
            self.mel_banks[mel_dtype_device], magnitude
        )  # torch(B, n_mels, stft.frames)
        return mel_spectrogram

    def forward(

        self, real: torch.Tensor, fake: torch.Tensor

    ):  # real: torch(B, 1, T) , fake: torch(B, 1, T)
        loss = 0.0
        for p in self.stft_params:
            real_mels = self.mel_spectrogram(real, *p)
            fake_mels = self.mel_spectrogram(fake, *p)
            real_logmels = torch.log(real_mels.clamp(min=1e-5)) / self.log_base
            fake_logmels = torch.log(fake_mels.clamp(min=1e-5)) / self.log_base
            loss += self.loss_fn(real_logmels, fake_logmels)
        return loss