Spaces:
Running
Running
import math | |
import torch | |
from rvc.lib.algorithm.commons import convert_pad_shape | |
class MultiHeadAttention(torch.nn.Module): | |
""" | |
Multi-head attention module with optional relative positional encoding and proximal bias. | |
Args: | |
channels (int): Number of input channels. | |
out_channels (int): Number of output channels. | |
n_heads (int): Number of attention heads. | |
p_dropout (float, optional): Dropout probability. Defaults to 0.0. | |
window_size (int, optional): Window size for relative positional encoding. Defaults to None. | |
heads_share (bool, optional): Whether to share relative positional embeddings across heads. Defaults to True. | |
block_length (int, optional): Block length for local attention. Defaults to None. | |
proximal_bias (bool, optional): Whether to use proximal bias in self-attention. Defaults to False. | |
proximal_init (bool, optional): Whether to initialize the key projection weights the same as query projection weights. Defaults to False. | |
""" | |
def __init__( | |
self, | |
channels: int, | |
out_channels: int, | |
n_heads: int, | |
p_dropout: float = 0.0, | |
window_size: int = None, | |
heads_share: bool = True, | |
block_length: int = None, | |
proximal_bias: bool = False, | |
proximal_init: bool = False, | |
): | |
super().__init__() | |
assert ( | |
channels % n_heads == 0 | |
), "Channels must be divisible by the number of heads." | |
self.channels = channels | |
self.out_channels = out_channels | |
self.n_heads = n_heads | |
self.k_channels = channels // n_heads | |
self.window_size = window_size | |
self.block_length = block_length | |
self.proximal_bias = proximal_bias | |
# Define projections | |
self.conv_q = torch.nn.Conv1d(channels, channels, 1) | |
self.conv_k = torch.nn.Conv1d(channels, channels, 1) | |
self.conv_v = torch.nn.Conv1d(channels, channels, 1) | |
self.conv_o = torch.nn.Conv1d(channels, out_channels, 1) | |
self.drop = torch.nn.Dropout(p_dropout) | |
# Relative positional encodings | |
if window_size: | |
n_heads_rel = 1 if heads_share else n_heads | |
rel_stddev = self.k_channels**-0.5 | |
self.emb_rel_k = torch.nn.Parameter( | |
torch.randn(n_heads_rel, 2 * window_size + 1, self.k_channels) | |
* rel_stddev | |
) | |
self.emb_rel_v = torch.nn.Parameter( | |
torch.randn(n_heads_rel, 2 * window_size + 1, self.k_channels) | |
* rel_stddev | |
) | |
# Initialize weights | |
torch.nn.init.xavier_uniform_(self.conv_q.weight) | |
torch.nn.init.xavier_uniform_(self.conv_k.weight) | |
torch.nn.init.xavier_uniform_(self.conv_v.weight) | |
torch.nn.init.xavier_uniform_(self.conv_o.weight) | |
if proximal_init: | |
with torch.no_grad(): | |
self.conv_k.weight.copy_(self.conv_q.weight) | |
self.conv_k.bias.copy_(self.conv_q.bias) | |
def forward(self, x, c, attn_mask=None): | |
# Compute query, key, value projections | |
q, k, v = self.conv_q(x), self.conv_k(c), self.conv_v(c) | |
# Compute attention | |
x, self.attn = self.attention(q, k, v, mask=attn_mask) | |
# Final output projection | |
return self.conv_o(x) | |
def attention(self, query, key, value, mask=None): | |
# Reshape and compute scaled dot-product attention | |
b, d, t_s, t_t = (*key.size(), query.size(2)) | |
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) | |
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) | |
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) | |
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1)) | |
if self.window_size: | |
assert t_s == t_t, "Relative attention only supports self-attention." | |
scores += self._compute_relative_scores(query, t_s) | |
if self.proximal_bias: | |
assert t_s == t_t, "Proximal bias only supports self-attention." | |
scores += self._attention_bias_proximal(t_s).to(scores.device, scores.dtype) | |
if mask is not None: | |
scores = scores.masked_fill(mask == 0, -1e4) | |
if self.block_length: | |
block_mask = ( | |
torch.ones_like(scores) | |
.triu(-self.block_length) | |
.tril(self.block_length) | |
) | |
scores = scores.masked_fill(block_mask == 0, -1e4) | |
# Apply softmax and dropout | |
p_attn = self.drop(torch.nn.functional.softmax(scores, dim=-1)) | |
# Compute attention output | |
output = torch.matmul(p_attn, value) | |
if self.window_size: | |
output += self._apply_relative_values(p_attn, t_s) | |
return output.transpose(2, 3).contiguous().view(b, d, t_t), p_attn | |
def _compute_relative_scores(self, query, length): | |
rel_emb = self._get_relative_embeddings(self.emb_rel_k, length) | |
rel_logits = self._matmul_with_relative_keys( | |
query / math.sqrt(self.k_channels), rel_emb | |
) | |
return self._relative_position_to_absolute_position(rel_logits) | |
def _apply_relative_values(self, p_attn, length): | |
rel_weights = self._absolute_position_to_relative_position(p_attn) | |
rel_emb = self._get_relative_embeddings(self.emb_rel_v, length) | |
return self._matmul_with_relative_values(rel_weights, rel_emb) | |
# Helper methods | |
def _matmul_with_relative_values(self, x, y): | |
return torch.matmul(x, y.unsqueeze(0)) | |
def _matmul_with_relative_keys(self, x, y): | |
return torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) | |
def _get_relative_embeddings(self, embeddings, length): | |
pad_length = max(length - (self.window_size + 1), 0) | |
start = max((self.window_size + 1) - length, 0) | |
end = start + 2 * length - 1 | |
if pad_length > 0: | |
embeddings = torch.nn.functional.pad( | |
embeddings, | |
convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]), | |
) | |
return embeddings[:, start:end] | |
def _relative_position_to_absolute_position(self, x): | |
batch, heads, length, _ = x.size() | |
x = torch.nn.functional.pad( | |
x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]) | |
) | |
x_flat = x.view(batch, heads, length * 2 * length) | |
x_flat = torch.nn.functional.pad( | |
x_flat, convert_pad_shape([[0, 0], [0, 0], [0, length - 1]]) | |
) | |
return x_flat.view(batch, heads, length + 1, 2 * length - 1)[ | |
:, :, :length, length - 1 : | |
] | |
def _absolute_position_to_relative_position(self, x): | |
batch, heads, length, _ = x.size() | |
x = torch.nn.functional.pad( | |
x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]]) | |
) | |
x_flat = x.view(batch, heads, length**2 + length * (length - 1)) | |
x_flat = torch.nn.functional.pad( | |
x_flat, convert_pad_shape([[0, 0], [0, 0], [length, 0]]) | |
) | |
return x_flat.view(batch, heads, length, 2 * length)[:, :, :, 1:] | |
def _attention_bias_proximal(self, length): | |
r = torch.arange(length, dtype=torch.float32) | |
diff = r.unsqueeze(0) - r.unsqueeze(1) | |
return -torch.log1p(torch.abs(diff)).unsqueeze(0).unsqueeze(0) | |
class FFN(torch.nn.Module): | |
""" | |
Feed-forward network module. | |
Args: | |
in_channels (int): Number of input channels. | |
out_channels (int): Number of output channels. | |
filter_channels (int): Number of filter channels in the convolution layers. | |
kernel_size (int): Kernel size of the convolution layers. | |
p_dropout (float, optional): Dropout probability. Defaults to 0.0. | |
activation (str, optional): Activation function to use. Defaults to None. | |
causal (bool, optional): Whether to use causal padding in the convolution layers. Defaults to False. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
filter_channels: int, | |
kernel_size: int, | |
p_dropout: float = 0.0, | |
activation: str = None, | |
causal: bool = False, | |
): | |
super().__init__() | |
self.padding_fn = self._causal_padding if causal else self._same_padding | |
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size) | |
self.conv_2 = torch.nn.Conv1d(filter_channels, out_channels, kernel_size) | |
self.drop = torch.nn.Dropout(p_dropout) | |
self.activation = activation | |
def forward(self, x, x_mask): | |
x = self.conv_1(self.padding_fn(x * x_mask)) | |
x = self._apply_activation(x) | |
x = self.drop(x) | |
x = self.conv_2(self.padding_fn(x * x_mask)) | |
return x * x_mask | |
def _apply_activation(self, x): | |
if self.activation == "gelu": | |
return x * torch.sigmoid(1.702 * x) | |
return torch.relu(x) | |
def _causal_padding(self, x): | |
pad_l, pad_r = self.conv_1.kernel_size[0] - 1, 0 | |
return torch.nn.functional.pad( | |
x, convert_pad_shape([[0, 0], [0, 0], [pad_l, pad_r]]) | |
) | |
def _same_padding(self, x): | |
pad = (self.conv_1.kernel_size[0] - 1) // 2 | |
return torch.nn.functional.pad( | |
x, convert_pad_shape([[0, 0], [0, 0], [pad, pad]]) | |
) | |